题目描述
农夫约翰正在一个新的销售区域对他的牛奶销售方案进行调查。
他想把牛奶送到T个城镇,编号为1~T。
这些城镇之间通过R条道路 (编号为1到R) 和P条航线 (编号为1到P) 连接。
每条道路i或者航线i连接城镇AiAi到BiBi,花费为CiCi。
对于道路,0≤Ci≤10,0000≤Ci≤10,000;然而航线的花费很神奇,花费CiCi可能是负数(−10,000≤Ci≤10,000−10,000≤Ci≤10,000)。
道路是双向的,可以从AiAi到BiBi,也可以从BiBi到AiAi,花费都是CiCi。
然而航线与之不同,只可以从AiAi到BiBi。
事实上,由于最近恐怖主义太嚣张,为了社会和谐,出台了一些政策保证:如果有一条航线可以从AiAi到BiBi,那么保证不可能通过一些道路和航线从BiBi回到AiAi。
由于约翰的奶牛世界公认十分给力,他需要运送奶牛到每一个城镇。
他想找到从发送中心城镇S把奶牛送到每个城镇的最便宜的方案。
输入格式
第一行包含四个整数T,R,P,S。
接下来R行,每行包含三个整数(表示一个道路)Ai,Bi,CiAi,Bi,Ci。
接下来P行,每行包含三个整数(表示一条航线)Ai,Bi,CiAi,Bi,Ci。
输出格式
第1..T行:第i行输出从S到达城镇i的最小花费,如果不存在,则输出“NO PATH”。
数据范围
1≤T≤250001≤T≤25000,
1≤R,P≤500001≤R,P≤50000,
1≤Ai,Bi,S≤T1≤Ai,Bi,S≤T,
输入样例:
6 3 3 4
1 2 5
3 4 5
5 6 10
3 5 -100
4 6 -100
1 3 -10
输出样例:
NO PATH
NO PATH
5
0
-95
-100
看数据大小,弗洛伊德肯定是跑不了的,根据数据限制,估计一下复杂度在O(nlogn)级别,所以很明显,这是一道单源最短路问题,考虑用dijskra或SPFA来解决,而dijskra无法解决边权值为负数的问题,所以我们只能往SPFA方向考虑。SPFA的复杂度最好是O(m),最坏O(mn),复杂度算不清楚,对这道题来说O(mn)肯定是超了,事实上出题人也卡掉了朴素SPFA的做法,那么我们考虑怎么去优化他。
SPFA的优化算法主要分为3部分。
1.双端队列优化广搜,
2.双向广搜
3.A-star
这里我们考虑用第一种方法。
具体思路是:
道路和航线合一起建图,然后跑SPFA,当搜到某个值(dist的值)小于队头值时,把该值放到队头,让他优先搜索。以求优化
#include <bits/stdc++.h>
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/hash_policy.hpp>
using namespace __gnu_pbds;
using namespace std;
const long long maxx = 0x3f3f3f3f3f3f3f3f;
const long long minn = 0xc0c0c0c0c0c0c0c0;
const double pi = 4.0 * atan(1.0);
#define int long long
#define f(i, n, m) for (long long i = n; i <= m; ++i)
#define unf(i, n, m) for (long long i = n; i >= m; --i)
#define kong NULL
#define debug cout << "sss" << endl;
// #define map unordered_map
#define map gp_hash_table
int t, r, p, s;
const int N = 2e5;
struct ww
{
int next, to, val;
} pre[N];
int head[N];
int cnt = 1;
void add(int x, int y, int z)
{
pre[cnt].to = y;
pre[cnt].val = z;
pre[cnt].next = head[x];
head[x] = cnt++;
}
deque<pair<int, int>> que;
int dist[25010];
void bfs()
{
que.push_front({0, s});
dist[s] = 0;
while (!que.empty())
{
auto p = que.front();
que.pop_front();
for (int i = head[p.second]; i; i = pre[i].next)
{
int to = pre[i].to;
int val = pre[i].val;
if (dist[to] > dist[p.second] + val)
{
dist[to] = dist[p.second] + val;
if (dist[to] < que.front().first)
que.push_front({dist[to], to});
else
que.push_back({dist[to], to});
}
}
}
}
void solve()
{
cin >> t >> r >> p >> s;
memset(dist, 0x3f, sizeof(dist));
f(i, 1, r)
{
int x, y, z;
cin >> x >> y >> z;
add(x, y, z);
add(y, x, z);
}
f(i, 1, p)
{
int x, y, z;
cin >> x >> y >> z;
add(x, y, z);
}
bfs();
f(i, 1, t)
{
if (dist[i] > 10000000)
cout << "NO PATH" << endl;
else
cout << dist[i] << endl;
}
}
signed main()
{
ios::sync_with_stdio(false);
solve();
return 0;
}