数据预处理是机器学习和数据挖掘任务中的一个关键步骤。它包括清理、转换和集成数据,以便将其准备为适合机器学习算法的形式。在本文中,我们将探讨数据预处理的一些基本功能,并提供相应的源代码示例。
- 数据清洗
数据清洗是数据预处理的第一步,旨在处理和纠正数据集中的错误、缺失值和异常值。常见的数据清洗任务包括去除重复值、填补缺失值和处理异常值。
import pandas as pd
# 去除重复值
df = df.drop_duplicates()
# 填补缺失值
df.fillna(value)
# 处理异常