构建最优的 RAG 检索增强生成系统:为你的数据集找到最优解

从 RAG 系统中获得最佳结果并不总是那么直接。你把文档切分成什么样子,检索多少片段,甚至你使用的策略(简单检索、查询重写、重排……)都会显著影响最终答案的质量。

我们将为一个数据集创建一个端到端的最佳 RAG 查找管道,你可以轻松地自定义它以包含不同的技术等
在这里插入图片描述

准备环境

每个好的项目都始于正确的工具。我们将安装一些重要的 Python 库来搭建一切。

# 安装库(如果需要,只运行一次)

!pip install openai pandas numpy faiss-cpu ipywidgets tqdm scikit-learn

运行安装后,你可能需要 重启你的 Jupyter 内核或运行时,以便更改生效。

现在我们已经安装好了,让我们将所有内容导入到我们的脚本中。

import os                     # 用于访问环境变量&
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI仙人掌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值