数据分析入门:使用scikit-learn进行模型建立和预测

51 篇文章 7 订阅 ¥59.90 ¥99.00
本文介绍了如何使用scikit-learn进行数据分析,以房价预测为例,展示了数据准备、线性回归模型建立及预测的过程。通过学习,读者可以掌握基本的模型建立和预测技巧。
摘要由CSDN通过智能技术生成

数据分析是当今数字时代中的一个重要领域,它涉及收集、清理、分析和解释数据以获得有价值的信息。在数据分析的过程中,模型建立和预测是一项核心任务。scikit-learn是一个功能强大的Python库,提供了广泛的机器学习算法和工具,可以帮助我们轻松地进行模型建立和预测。

在本文中,我们将介绍如何使用scikit-learn库进行数据分析中的模型建立和预测,并提供相应的源代码示例。

准备数据

首先,我们需要准备数据以进行模型建立和预测。在本例中,我们将使用一个虚拟的数据集来演示。假设我们正在研究一个房价预测的问题,我们收集了一些与房屋相关的特征和对应的房价数据。

import pandas as pd

# 创建一个虚拟的数据集
data = {
   
    '房屋面积': [
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值