分类预测是机器学习中常见的任务之一,它涉及根据给定的输入数据将其分为不同的类别。Scikit-Learn是一个广泛使用的Python机器学习库,提供了丰富的分类算法和工具。本文将介绍如何使用Scikit-Learn进行分类预测,并提供相应的源代码示例。
首先,我们需要安装Scikit-Learn库。可以使用以下命令在Python环境中安装Scikit-Learn:
pip install scikit-learn
安装完成后,我们可以导入所需的模块和函数开始分类预测的过程。下面是一个基本的分类预测示例,使用Scikit-Learn中的决策树算法:
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn