【2024.11.13练习】波动数列

题目描述


题目分析

数列问题,由于前一项和后一项有关联,考虑用动态规划,但由于初项未知,很难建立状态。故尝试从数学角度求解。

不妨设a_i为数列第i项。S为数列的和。数列每一项与后一项的差值为d_i,则:

S=na_1+(n-1)d_1+(n-2)d_2+...+2d_{n-2}+d_{n-1}

P=d_{n-1}+2d_{n-2}+...+(n-2)d_2+(n-1)d_1,代换得:

S=na_1+P,移项后得:

\frac{S-P}{n}=a_1

由于此处的a_1为任意整数,因此满足(S-P)\ mod\ n=0的方案数即为本题答案。

P的前i项和为P_idp[i][j]为满足(S-P_i)\ mod\ n=j的方案数。

初始状态dp[0][j]即为满足S\ mod\ n=j的方案数(0或1)

状态转移方程(选择+a或-b)为:

dp[i][j]=dp[i-1][(j+n-ia)\ mod \ n]+dp[i-1][(j+n+ib)\ mod \ n]


我的代码

注意s的范围是long long。此外注意把任何被取余数转化为结果不变的正数后再取余!否则取余结果为负数,会有误。

#include<iostream>
#include<algorithm>
#include<string>
#include<cmath>
using namespace std;
typedef long long ll;
ll dp[1005][1005];
ll n, s, a, b;
int main(void)
{
	cin >> n >> s >> a >> b;
	for (int i = 0; i < n; i++)
	{
		if ((s % n + n) % n == i) dp[0][i] = 1;
		else dp[0][i] = 0;
	}
	for (int i = 1; i < n; i++)
	{
		for (int j = 0; j < n; j++)
		{
			dp[i][j] = dp[i - 1][(j - (i * a) % n + n) % n] + dp[i - 1][(j + i * b) % n];
			dp[i][j] %= 100000007;
		}
	}
	ll ans = dp[n - 1][0];
	cout << ans;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值