扩展欧几里得的学习

1  概述

          扩展欧几里得算法  用来 求解一组x,y,使它们满足贝祖等式: ax+by =  gcd(a, b) =d(已知a, b, 且该解一定存在)。扩展欧几里德常用在求解模线性方程及方程组中。

2  欧几里得算法   (又称辗转相除法)

         

int gcd(int a, int b)
{
    if (a < b)
    {
        int c = a;
        a = b;
        b = c;
    }
    if (b == 0)
        return a;
    else
        return gcd(b, a%b);
}

2 扩展欧几里得
如果 b == 0, x = 1, y = 0, 使得 a = ax + by

如果 b != 0, 则 gcd 首先计算出满足 dd = gcd(b, a%b)和 dd = b*xx + (a%b)*yy

                     有 d = gcd(a, b) = dd = gcd(b, a%b)

                    ==>  d = b*xx + (a - b * (a/b))yy  = a*yy + b*(xx - (a/b)*yy)

                     则对应过来有:x = yy, y = xx - (a/b)*yy

int e_gcd(int a, int b, int &x, int &y)
{
    if (b == 0)
    {
        x = 1, y = 0;
        return a;
    }
    else
    {
        int cx, cy, d;
        d = e_gcd(b, a%b, cx, cy);
        x = cy;
        y = cx - (a/b)*cy;
        return d;
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值