295. 数据流的中位数

该博客介绍了如何利用两个优先级队列(大根堆和小根堆)在O(logn)的时间复杂度内解决数据流中位数问题。通过巧妙的插入策略保持堆的平衡,使得在不存储所有数据的情况下,可以快速找到中位数。代码实现中展示了如何在C++中创建这两个堆,并实现了`addNum`和`findMedian`方法。
摘要由CSDN通过智能技术生成
295. 数据流的中位数

中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。

例如,

[2,3,4] 的中位数是 3

[2,3] 的中位数是 (2 + 3) / 2 = 2.5

设计一个支持以下两种操作的数据结构:

  • void addNum(int num) - 从数据流中添加一个整数到数据结构中。
  • double findMedian() - 返回目前所有元素的中位数。

这题难就难在,如何在较低的时间复杂度里面实现findMedian。

  • 如果把所有数据存入数组,那么每次插入都需要将元素挪动,时间复杂度至少 O(n)。
  • 使用二叉搜索树倒不是不行,需要每个节点维护当前这棵树有多少节点。这样也会导致add和find操作都是O(logn),主要还是实现起来会麻烦一些,因为这样的二叉搜索树你还得自己实现一个呢,需要实现二叉搜索树的插入和按rank查找操作。当然,极端情况下,二叉搜索树也可能退化成链表,那复杂度也是O(n)。

这个问题的解法非常巧妙,我是没想到。这里是看了labuladong的解题思路,自己回放一遍。建议直接看labuladong的原文。

实现的思路是使用两个优先级队列,一个是大根堆,一个是小根堆。要求满足以下条件:

  • 大根堆所有的元素小于等于 小根堆所有元素,即大根堆堆顶元素小于小根堆堆顶元素
  • 如果大根堆元素和小根堆元素个数相等,则插入时,优先插入大根堆;否则插入小根堆。

如果所有元素满足以上两个条件,那么中位数(findMedian函数逻辑)就是:如果大根堆元素多,就大根堆堆顶,否则就是两个堆顶元素取平均值。

为了保证以上两个条件,在插入元素(addNum函数逻辑)时,需要进行以下操作:

  • 首先根据大根堆和小根堆元素判断应该插入大根堆还是小根堆,这样满足条件2
  • 插入大根堆,则需要先插入小根堆,再将小根堆堆顶元素插入大根堆;反之,亦然,这样才能保证条件1成立

代码实现

class MedianFinder {
public:
    /** initialize your data structure here. */
    priority_queue<int> maxHeap;// 默认大根堆
    priority_queue<int,vector<int>,greater<int>>minHeap;// 小根堆
    /*
    	实现的思路是使用两个优先级队列,一个是大根堆,一个是小根堆。要求满足以下条件:

        - 大根堆所有的元素小于等于 小根堆所有元素,即大根堆堆顶元素小于小根堆堆顶元素
        - 如果大根堆元素和小根堆元素个数相等,则插入时,优先插入大根堆;否则插入小根堆。
    
    */
    
    MedianFinder() {
		
    }
    
    void addNum(int num) {
        /*
        - 首先根据大根堆和小根堆元素判断应该插入大根堆还是小根堆,这样满足条件2
		 - 插入大根堆,则需要先插入小根堆,再将小根堆堆顶元素插入大根堆;反之,亦然,这样才能保证条件1成立
        */
		if(maxHeap.size()==minHeap.size()){
            // 优先插入大根堆
            minHeap.push(num);
            maxHeap.push(minHeap.top());
            minHeap.pop();
        }else{
            maxHeap.push(num);
            minHeap.push(maxHeap.top());
            maxHeap.pop();
        }
    }
    
    double findMedian() {
        /*
        如果大根堆元素多,就大根堆堆顶,否则就是两个堆顶元素取平均值。
        */
        if(minHeap.size()==maxHeap.size()){
            return (minHeap.top()+maxHeap.top())/2.0;
        } else{
            return maxHeap.top();
        }

    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值