中位数是有序列表中间的数。如果列表长度是偶数,中位数则是中间两个数的平均值。
例如,
[2,3,4] 的中位数是 3
[2,3] 的中位数是 (2 + 3) / 2 = 2.5
设计一个支持以下两种操作的数据结构:
void addNum(int num) - 从数据流中添加一个整数到数据结构中。
double findMedian() - 返回目前所有元素的中位数。
示例:
addNum(1)
addNum(2)
findMedian() -> 1.5
addNum(3)
findMedian() -> 2
使用一个大顶堆一个小顶堆,大顶堆中最大的数小于等于小顶堆中最小的数,每次插入时比较:
如果当前num比小顶堆中最小的堆顶元素大,那么把num插入小顶堆,反之则把num插入大顶堆;
并在每次插入后检查两个堆的size之差>1时,将元素多的堆顶元素移到元素少的堆中去,保证两个堆元素个数平衡。
class MedianFinder {
Queue<Integer> queue1;
Queue<Integer> queue2;
/** initialize your data structure here. */
public MedianFinder() {
queue1 = new PriorityQueue<>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o1-o2;
}
});
queue2 = new PriorityQueue<>(new Comparator<Integer>() {
@Override
public int compare(Integer o1, Integer o2) {
return o2-o1;
}
});
}
public void addNum(int num) {
if(queue1.isEmpty()){
queue1.offer(num);
}else if(num>=queue1.peek()){//q1的都比q2大
queue1.offer(num);
if(queue1.size()>queue2.size()+1){
queue2.offer(queue1.poll());
}
}else{
queue2.offer(num);
if(queue2.size()>queue1.size()+1){
queue1.offer(queue2.poll());
}
}
}
public double findMedian() {
if(queue1.size()>queue2.size()){
return queue1.peek();
}else if(queue1.size()<queue2.size()){
return queue2.peek();
}
return (double)(queue1.peek()+queue2.peek())/2;
}
}
/**
* Your MedianFinder object will be instantiated and called as such:
* MedianFinder obj = new MedianFinder();
* obj.addNum(num);
* double param_2 = obj.findMedian();
*/