LeetCode-algorithms 357. Count Numbers with Unique Digits

题目:

Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n.

Example:

Given n = 2, return 91. (The answer should be the total numbers in the range of 0 ≤ x < 100, excluding [11,22,33,44,55,66,77,88,99])


思考:

这一题我使用的是DP的思想,DP[i]则表示在0 ≤ x < 10^i的唯一数字数的个数,那么很明显,首先DP[0] = 0;而DP[i] = DP[i-1]+(i个数字唯一数的个数)。

i个数字唯一数的个数,首先第一位可取的数字是(1-9)9个数字,之后每一位都可取(0-9)10个数字,但是由于之前的位数取了一个数字,因此计算起来为9*(i-1)的阶乘,而当i>9时,i个数字很明显不可能组成一个唯一数,所以dp[i](i>9)==dp[9]。


代码:

int countN(int N){
    int factorial = 9;
    for(int i = 1;i < N;i++){
        factorial*=(10-i);
    }
    return factorial;
}


class Solution {
public:
    int countNumbersWithUniqueDigits(int n) {
        vector<int> dp(n+1,0);
        dp[0] = 1;
        for(int i = 1;i <=n; i++){
            dp[i] = dp[i-1] + countN(i);
        }
        return dp[n];
    }
};


结果:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值