对于给定的二叉树,本题要求你按从上到下、从左到右的顺序输出其所有叶结点。
输入格式:
首先第一行给出一个正整数 N(≤10),为树中结点总数。树中的结点从 0 到 N−1 编号。随后 N 行,每行给出一个对应结点左右孩子的编号。如果某个孩子不存在,则在对应位置给出 "-"。编号间以 1 个空格分隔。
输出格式:
在一行中按规定顺序输出叶结点的编号。编号间以 1 个空格分隔,行首尾不得有多余空格。
输入样例:
8
1 -
- -
0 -
2 7
- -
- -
5 -
4 6
输出样例:
4 1 5
提交结果:
思路分析:
作为本次树的PTA的最后一题,看起来蛮唬人的,实则慢条斯理,不难解决。
首先,我们注意到输入,其实这里有暗示咱们,用数组/静态链表储存,今日数据结构老师在上课也特别指出了这道题输入需要注意的内容。因此,我们先考虑处理输入内容。
1. 找树根
创建一维数组,长度是N(题中要求输入的结点数量),内容全部置零,一次循环,处理输入每行中出现的数字(因为是左右孩子结点,所以它们一定不是根节点),之后在相应的一维数组下标位置1,最后一次循环,找下标位置是0的下标,返回此下标,这个就是根。下面是代码:
int FindHead(ThreeArr TArr[], int n){
if (n == 1)
return 0;
int Arr[n];
for(int i = 0;i<n;i++){
Arr[i] = 0;
}
for(int i = 0;i<n;i++){
if(TArr[i].LNode != '-'){
Arr[TArr[i].LNode-'0'] = 1;
}
if(TArr[i].LNode != '-'){
Arr[TArr[i].RNode-'0'] = 1;
}
}
int flag = n;
for(int i = 0;i<n;i++){
if(Arr[i] == 0) {
flag = i;
break;
}
}
return flag;
}
2. 创建树
这里内容非常简单,递归创建树即可。下标找左右子树。
TreeNode *BuildTree(int head, ThreeArr TArr[]){
TreeNode *T = (TreeNode *)malloc(sizeof(TreeNode));
T->val = head;
T->right = T->left =NULL;
if(TArr[head].LNode != '-')
T->left = BuildTree(TArr[head].LNode - '0', TArr);
if(TArr[head].RNode != '-')
T->right = BuildTree(TArr[head].RNode - '0', TArr);
return T;
}
3. 找叶子并输出
因为题干要求从上到下、从左到右,因此,我们在这选择层次遍历,一个一个结点的判断该节点有无左右儿子,若没有,则打印,这里要注意最后一个打印出来不要有空格。
void LevelOrder(TreeNode *T)
{
int flag = 0;
if(T)
{
TreeNode *queue[100];
int left = 0, right = 0;
queue[right++] = T;
while (left < right)
{
TreeNode *bt = queue[left++];
if(bt->left == NULL && bt->right ==NULL) {
if(flag == 0){
printf("%d", bt->val);
flag++;
}
else {
printf(" %d", bt->val);
flag++;
}
}
if(bt->left)
queue[right++] = bt->left;
if(bt->right)
queue[right++] = bt->right;
}
}
}
代码:
//
// Created by DDD on 2023/11/24.
//
#include <stdio.h>
#include <malloc.h>
typedef struct TreeNode{
int val;
struct TreeNode *left;
struct TreeNode *right;
} TreeNode;
typedef struct ThreeArr{
char LNode;
char RNode;
} ThreeArr;
int FindHead(ThreeArr TArr[], int n){
if (n == 1)
return 0;
int Arr[n];
for(int i = 0;i<n;i++){
Arr[i] = 0;
}
for(int i = 0;i<n;i++){
if(TArr[i].LNode != '-'){
Arr[TArr[i].LNode-'0'] = 1;
}
if(TArr[i].LNode != '-'){
Arr[TArr[i].RNode-'0'] = 1;
}
}
int flag = n;
for(int i = 0;i<n;i++){
if(Arr[i] == 0) {
flag = i;
break;
}
}
return flag;
}
TreeNode *BuildTree(int head, ThreeArr TArr[]){
TreeNode *T = (TreeNode *)malloc(sizeof(TreeNode));
T->val = head;
T->right = T->left =NULL;
if(TArr[head].LNode != '-')
T->left = BuildTree(TArr[head].LNode - '0', TArr);
if(TArr[head].RNode != '-')
T->right = BuildTree(TArr[head].RNode - '0', TArr);
return T;
}
void LevelOrder(TreeNode *T)
{
int flag = 0;
if(T)
{
TreeNode *queue[100];
int left = 0, right = 0;
queue[right++] = T;
while (left < right)
{
TreeNode *bt = queue[left++];
if(bt->left == NULL && bt->right ==NULL) {
if(flag == 0){
printf("%d", bt->val);
flag++;
}
else {
printf(" %d", bt->val);
flag++;
}
}
if(bt->left)
queue[right++] = bt->left;
if(bt->right)
queue[right++] = bt->right;
}
}
}
int main(){
int n;
scanf("%d",&n);
getchar();
ThreeArr ta[n];
for(int i = 0;i<n;i++){
scanf("%c %c",&ta[i].LNode,&ta[i].RNode);
getchar();
}
int head = FindHead(&ta, n);
TreeNode Tree = *BuildTree(head, &ta);
LevelOrder(&Tree);
}
接着好好学一些比较固定的算法!!!
return 0;//月似当时