KNN算法及其应用

一、KNN算法介绍
1. 综述
1.1 Cover和Hart在1968年提出了最初的邻近算法
1.2 分类(classification)算法
1.3 输入基于实例的学习(instance-based learning), 懒惰学习(lazy learning)

  1. 例子:
    这里写图片描述
    未知电影属于什么类型?
    这里写图片描述
    这里写图片描述
  2. 算法详述

    3.1 步骤:
    为了判断未知实例的类别,以所有已知类别的实例作为参照
    选择参数K
    计算未知实例与所有已知实例的距离
    选择最近K个已知实例
    根据少数服从多数的投票法则(majority-voting),让未知实例归类为K个最邻近样本中最多数的类别

    3.2 细节:
    关于K
    关于距离的衡量方法:
    3.2.1 Euclidean Distance 定义
    这里写图片描述这里写图片描述

    其他距离衡量:余弦值(cos), 相关度 (correlation), 曼哈顿距离 (Manhattan distance)

    3.3 举例
    这里写图片描述

  3. 算法优缺点:
    4.1 算法优点
    简单
    易于理解
    容易实现
    通过对K的选择可具备丢噪音数据的健壮性

    4.2 算法缺点
    这里写图片描述
    需要大量空间储存所有已知实例
    算法复杂度高(需要比较所有已知实例与要分类的实例)
    当其样本分布不平衡时,比如其中一类样本过大(实例数量过多)占主导的时候,新的未知实例容易被归类为这个主导样本,因为这类样本实例的数量过大,但这个新的未知实例实际并木接近目标样本(如图中的Y点所示)

  4. 改进版本
    考虑距离,根据距离加上权重(如图Y点可以加权重)
    比如: 1/d (d: 距离)

二、KNN算法应用

1 数据集介绍:

虹膜
这里写图片描述
150个实例
这里写图片描述
萼片长度,萼片宽度,花瓣长度,花瓣宽度
(sepal length, sepal width, petal length and petal width)

类别:
Iris setosa, Iris versicolor, Iris virginica.

  1. 利用Python的机器学习库sklearn: SkLearnExample.py(内部有虹膜实例及其算法)
from sklearn import neighbors
from sklearn import datasets
from sklearn.neighbors.classification import KNeighborsClassifier
from docutils.nodes import target

knn = KNeighborsClassifier()   #实例化分类器

iris = datasets.load_iris()    #加载数据集

print(iris)

knn.fit(iris.data, iris.target)

predictedLabel = knn.predict([[0.1,0.2,0.3,0.4]])

print(predictedLabel)
  1. KNN 实现Implementation:
import csv
import random
import math
import operator

def loadDataset(filename, split, trainingSet=[] , testSet=[]):
    with open(filename, 'rt',encoding="utf-8") as csvfile: #含有中文路径需要加encoding="utf-8"
        lines = csv.reader(csvfile)
        dataset = list(lines)
        for x in range(len(dataset)-1):
            for y in range(4):
                dataset[x][y] = float(dataset[x][y])
            if random.random() < split:
                trainingSet.append(dataset[x])
            else:
                testSet.append(dataset[x])

def euclideanDistance(instance1,instance2,length):
    distance = 0
    for x in range(length):
        distance +=pow((instance1[x]-instance2[x]),2)
        return math.sqrt(distance)

def getNeighbors(trainingSet, testInstance, k):
    distances = []
    length = len(testInstance)-1
    for x in range(len(trainingSet)):
        dist = euclideanDistance(testInstance, trainingSet[x], length)
        distances.append((trainingSet[x], dist))
    distances.sort(key=operator.itemgetter(1))
    neighbors = []
    for x in range(k):
        neighbors.append(distances[x][0])
    return neighbors

def getResponse(neighbors):
    classVotes = {}
    for x in range(len(neighbors)):
        response = neighbors[x][-1]
        if response in classVotes:
            classVotes[response] += 1
        else:
            classVotes[response] = 1
    sortedVotes = sorted(classVotes.items(), key=operator.itemgetter(1), reverse=True)
    return sortedVotes[0][0]

def getAccuracy(testSet, predictions):
    correct = 0
    for x in range(len(testSet)):
        if testSet[x][-1] == predictions[x]:
            correct += 1
    return (correct/float(len(testSet))) * 100.0

def main():
    # prepare data
    trainingSet=[]
    testSet=[]
    split = 0.67
    loadDataset(r'G:\机器视觉\irisdata.txt', split, trainingSet, testSet)
    print ('Train set: ' + repr(len(trainingSet)))
    print ('Test set: ' + repr(len(testSet)))
    # generate predictions
    predictions=[]
    k = 3
    for x in range(len(testSet)):
        neighbors = getNeighbors(trainingSet, testSet[x], k)
        result = getResponse(neighbors)
        predictions.append(result)
        print('> predicted=' + repr(result) + ', actual=' + repr(testSet[x][-1]))
    accuracy = getAccuracy(testSet, predictions)
    print('Accuracy: ' + repr(accuracy) + '%')

main()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值