knn算法实例python_kNN算法及其Python实例

本文介绍了kNN算法的重要性,并通过Python的scikit-learn库展示了如何进行kNN分类。以鸢尾花数据集为例,详细解释了数据预处理、模型构建和预测过程,同时探讨了kNN在回归问题中的应用。
摘要由CSDN通过智能技术生成

2017 September 10

kNN

kNN算法及其Python实例

在2006年12月召开的 IEEE 数据挖掘国际会议上(ICDM, International Conference on Data Mining),与会的各位专家选出了当时的十大“数据挖掘算法”( top 10 data mining algorithms ), kNN算法即位列其中。

该算法思路简洁,但是在实践中却相当有效。如果你对其算法原理仍不甚了解,你可以参考本博客之前的文章《机器学习中的kNN算法及Matlab实例》。KNN算法不仅可以用于分类,还可以用于回归,但主要应用于分类。在此前的文章中,我们给出的实例是基于Matlab实现的。本文将演示在Python语言中利用scikit-learn提供的函数来进行基于 kNN的Classification实例。最后,本文还会介绍利用KNN进行回归的基本思路。

一、在Python中读入iris数据集,并进行图形化的展示

这里所使用的数据同样是经典的iris数据集,这一点同文章《机器学习中的kNN算法及Matlab实例》一致。注意原数据集中的每一个数据点都是一个4维向量,我们仅取Petal.Length和Petal.Width这两列数据,一共150行,三类鸢尾花每类各50行。

首先引入各种必要的package。

>>> import matplotlib.pyplot as plt

>>> import numpy as np

>>> from sklearn import neighbors

>>> from sklearn import datasets

接下来,载入数据集。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值