最近在做学校VJ上开的题目遇到很多问题,题目不算特别难,但是平时写代码用的是PTA第一次用VJ感觉很不习惯老是Runtime error,先记几道自己已经做出来的,之后的题目会依次发出来。
Find and list all four-digit numbers in decimal notation that have the property that the sum of its four digits equals the sum of its digits when represented in hexadecimal (base 16) notation and also equals the sum of its digits when represented in duodecimal (base 12) notation.
For example, the number 2991 has the sum of (decimal) digits 2+9+9+1 = 21. Since 2991 = 11728 + 8144 + 9*12 + 3, its duodecimal representation is 189312, and these digits also sum up to 21. But in hexadecimal 2991 is BAF16, and 11+10+15 = 36, so 2991 should be rejected by your program.
The next number (2992), however, has digits that sum to 22 in all three representations (including BB016), so 2992 should be on the listed output. (We don’t want decimal numbers with fewer than four digits – excluding leading zeroes – so that 2992 is the first correct answer.)
Input
There is no input for this problem
Output
Your output is to be 2992 and all larger four-digit numbers that satisfy the requirements (in strictly increasing order), each on a separate line with no leading or trailing blanks, ending with a new-line character. There are to be no blank lines in the output. The first few lines of the output are shown below.
Sample Input
There is no input for this problem
Sample Output
2992
2993
2994
2995
2996
2997
2998
2999
…
题目意思是给出一个大于2991的四位数,也就是2991-9999。
并且用12进制和16进制来转换他们,并把转换完的各个位数加和。
判断12进制时和10进制和16进制时各个位数的加和是否相等。
题目里已经给出了12进制每个位的权重,16进制虽然同理但16进制的第三位的权重转换为10进制时是4096在题目给出的2991-9999中有一部分数是小于它的所以这里要判断该数和4096的大小。
#include<stdio.h>
int main()
{
int a,b,c,d,e,f,g;
int n[100];
a=2992;
b=0;
while(b<100){
n[b]=0;
b=b+1;
}
f=0;
while(a<9999){
b=0;
b=b+a/1728;
b=b+a%1728/144;
b=b+a%1728%144/12;
b=b+a%1728%144%12;//转换12进制的各个位数和
c=0;
if(a<4096){
c=c+a/256;
c=c+a%256/16;
c=c+a%256%16;//小于4096时转换为16进制各个位数的和
}
if(a>4096){
c=c+a/4096;
c=c+a%4096/256;
c=c+a%4096%256/16;
c=c+a%4096%256%16;//大于4096时转换为16进制各个位数的和
}
d=a;
e=0;
while(d>0){
e=e+d%10;
d=d/10;
}
if(e==b&&e==c){
n[f]=a;
f=f+1;
}
a=a+1;
}
b=0;
while(n[b]!=0){
printf("%d",n[b]);
if(n[b+1]!=0){
printf("\n");
}
b=b+1;
}
}