代码随想录算法训练营 | 二叉树part02

226. 翻转二叉树

226. 翻转二叉树

递归法

class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        if (root == nullptr) {
            return nullptr;
        }
        TreeNode* right = invertTree(root->left); //左
        TreeNode* left = invertTree(root->right); //右
        //后序遍历
        root->left = left; //中
        root->right = right; 
        return root;
    }
};

迭代 前序遍历

class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        if (root == nullptr) {
            return nullptr;
        }
        stack<TreeNode*> stk;
        stk.push(root);
        while (!stk.empty()) {
            TreeNode* cur = stk.top();
            stk.pop();
            swap(cur->left, cur->right); // 交换当前节点的左右子节点 前序遍历
            if (cur->right) {
                stk.push(cur->right);
            }
            if (cur->left) {
                stk.push(cur->left);
            }
        }
        return root;
    }
};

广度优先遍历

class Solution {
public:
    TreeNode* invertTree(TreeNode* root) {
        if (root == nullptr) {
            return nullptr;
        }
        queue<TreeNode*> que;
        que.push(root);
        while (!que.empty()) {
            int size = que.size();
            while (size) {
                TreeNode* cur = que.front();
                que.pop();
                --size;
                swap(cur->left, cur->right); // 交换左右子节点
                if (cur->left) {
                    que.push(cur->left);
                }
                if (cur->right) {
                    que.push(cur->right);
                }
            }
        }
        return root;
    }
};

101. 对称二叉树

101. 对称二叉树
根节点的左右子树是否可以相互翻转;

递归法

class Solution {
public:
    bool compare(TreeNode* left, TreeNode* right) {
        if (left == nullptr && right != nullptr) {
            return false;
        } else if (left != nullptr && right == nullptr) {
            return false;
        } else if (left == nullptr && right == nullptr) {
            return true;
        } else if (left->val != right->val) {
            return false;
        }
        bool outside = compare(left->left, right->right);
        bool inside = compare(left->right, right->left);
        bool isSame = outside && inside;
        return isSame;
    }
    bool isSymmetric(TreeNode* root) {
        if (root == nullptr) {
            return true;
        }
        return compare(root->left, root->right);
    }
};

100.相同的树

100.相同的树

class Solution {
public:
    bool isSameTree(TreeNode* p, TreeNode* q) {
        if (p == nullptr && q == nullptr) {
            return true;
        } else if (p != nullptr && q == nullptr) {
            return false;
        } else if (p == nullptr && q != nullptr) {
            return false;
        } else if (p->val != q->val) {
            return false;
        }
        return isSameTree(p->left, q->left) && isSameTree(p->right, q->right);
    }
};

572.另一个树的子树

class Solution {
public:
    // 判断两棵树是否相同
    bool isSame(TreeNode* root, TreeNode* subRoot) {
        if (root == nullptr && subRoot == nullptr) {
            return true;
        } else if (root != nullptr && subRoot == nullptr) {
            return false;
        } else if (root == nullptr && subRoot != nullptr) {
            return false;
        } else if (root->val != subRoot->val) {
            return false;
        }
        return isSame(root->left, subRoot->left) &&
                isSame(root->right, subRoot->right);
    }
    bool isSubtree(TreeNode* root, TreeNode* subRoot) {
        if(subRoot == nullptr) { 
            return true; 
        }
        if (root == nullptr) {
            return false;
        }
        //判断当前root与subRoot是否相同,
        //如果不相同,判断root的左或右子树与subRoot是否相同
        return isSame(root, subRoot) ||
               isSubtree(root->right, subRoot) ||
               isSubtree(root->left, subRoot);
    }
};

二叉树的深度和高度

二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数或者节点数(取决于高度从0开始还是从1开始)

104.二叉树的最大深度

104.二叉树的最大深度

递归法

根节点的高度就是二叉树的最大深度;
后序遍历 求 跟节点的高度

class Solution {
public:
    int maxDepth(TreeNode* root) {
        if(root == nullptr) {
            return 0;
        }
        int leftHeight = maxDepth(root->left);
        int rightHeight = maxDepth(root->right);
        int height = max(leftHeight, rightHeight) + 1;
        return height;
        //return max(maxDepth(root->left),maxDepth(root->right)) + 1;
    }
};

广度优先遍历

计算二叉树的最大深度即计算二叉树的层数;

class Solution {
public:
    int maxDepth(TreeNode* root) {
        int depth = 0;
        if (root == nullptr) {
            return 0;
        }
        queue<TreeNode*> que;
        que.push(root);
        while (!que.empty()) {
            int size = que.size();
            while (size) {
                TreeNode* cur = que.front();
                que.pop();
                if (cur->left) {
                    que.push(cur->left);
                }
                if (cur->right) {
                    que.push(cur->right);
                }
                --size;
            }
            ++depth; 
        }
        return depth;
    }
};

111.二叉树的最小深度

111.二叉树的最小深度
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明:叶子节点是指没有子节点的节点。

递归法

同104计算根节点的最小高度,注意左右子字节一方为空的情况。

class Solution {
public:
    int minDepth(TreeNode* root) {
        if(root == nullptr) {
            return 0;
        }
        if(root->left == nullptr) {
            return minDepth(root->right) + 1;
        }
        if(root->right == nullptr) {
            return minDepth(root->left) + 1;
        }
        return min(minDepth(root->left),minDepth(root->right)) + 1;
    }
};

广度优先遍历

叶子节点所在的层数即为它的深度,层序遍历可以保证最先访问到的叶子节点深度最小,即整棵二叉树的最小深度。

class Solution {
public:
    int minDepth(TreeNode* root) {
        if(root == nullptr) {
            return 0;
        }
        queue<TreeNode*> que;
        int res = 1; //根节点不为空,深度初始值设为 1
        que.push(root);
        while(!que.empty()) {
            TreeNode* cur = nullptr;
            int size = que.size();
            while (size) {
                cur = que.front();
                que.pop();
                if(cur->left == nullptr && cur->right == nullptr) {
                    return res; //是叶子节点,返回它的深度
                }
                if(cur->left) {
                    que.push(cur->left);
                }
                if(cur->right) {
                    que.push(cur->right);
                }
                --size;
            }
            ++res;
        }
        return res;
    }
};

559. N 叉树的最大深度

559. N 叉树的最大深度

广度优先遍历-层序遍历

class Solution {
public:
    int maxDepth(Node* root) {
        if (root == nullptr) {
            return 0;
        }
        queue<Node*> que;
        que.push(root);
        int res = 0;
        while (!que.empty()) {
            int size = que.size();
            ++res; // 更新深度
            while (size) {
                Node* cur = que.front();
                que.pop();
                --size;
                // 如果计算最小深度就要判断当前节点是否为叶子节点
                // 将当前节点的所有叶子节点压入队列
                for (Node* node : cur->children) {
                    que.push(node);
                }
            }
        }
        // N 叉树的层数即为最大深度
        return res;
    }
};

递归法

class Solution {
public:
    int maxDepth(Node* root) {
        if (root == nullptr) {
            return 0;
        }
        int getDepth = 0;
        for(Node* node : root->children) {
            getDepth = max(getDepth, maxDepth(node));
        }
        return getDepth + 1;
    }
};
代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14天的训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15天的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16天的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值