找树左下角的值
给定一个二叉树的 根节点 root,请找出该二叉树的 最底层 最左边 节点的值。 假设二叉树中至少有一个节点。
class Solution {
int res = 0;
int d = 0;
public:
void leftNodeDepth(TreeNode* node, int depth){
if(node == nullptr) {
return ;
}
if (d < depth) {
res = node->val;
d = depth;
}
if (node->left) {
leftNodeDepth(node->left, depth + 1);
}
if (node->right) {
leftNodeDepth(node->right, depth + 1);
}
}
int findBottomLeftValue(TreeNode* root) {
leftNodeDepth(root, 1);
return res;
}
};
路径总和
112. 路径总和
给你二叉树的根节点 root 和一个表示目标和的整数 targetSum 。判断该树中是否存在 根节点到叶子节点的路径,这条路径上所有节点值相加等于目标和 targetSum 。如果存在,返回 true ;否则,返回 false 。
叶子节点 是指没有子节点的节点。
class Solution {
public:
void pathSum(TreeNode* node, int& sum, int& targetSum, bool& flag) {
sum += node->val;
if (node->left == nullptr && node->right == nullptr) {
if (sum == targetSum) {
flag = true;
}
}
if (node->left) {
pathSum(node->left, sum, targetSum, flag);
sum -= node->left->val;
}
if (node->right) {
pathSum(node->right, sum, targetSum, flag);
sum -= node->right->val;
}
}
bool hasPathSum(TreeNode* root, int targetSum) {
int sum = 0;
bool flag = false;
if(root == nullptr) {
return false;
}
pathSum(root, sum, targetSum, flag);
return flag;
}
};
113. 路径总和ii
给你二叉树的根节点 root 和一个整数目标和 targetSum ,找出所有 从根节点到叶子节点 路径总和等于给定目标和的路径。
叶子节点 是指没有子节点的节点。
class Solution {
public:
void path(TreeNode* node, int& targetSum, vector<vector<int>>& res, vector<int>& temp) {
if (node == nullptr) {
return;
}
temp.push_back(node->val);
targetSum -= node->val;
if (node->left == nullptr && node->right == nullptr) {
if (targetSum == 0) {
res.push_back(temp);
}
}
if (node->left) {
path(node->left, targetSum, res, temp);
targetSum += node->left->val;
temp.pop_back();
}
if (node->right) {
path(node->right, targetSum, res, temp);
targetSum += node->right->val;
temp.pop_back();
}
}
vector<vector<int>> pathSum(TreeNode* root, int targetSum) {
vector<vector<int>> res;
vector<int> temp;
path(root, targetSum, res, temp);
return res;
}
};
从中序与后序遍历序列构造二叉树
106.从中序与后序遍历序列构造二叉树
class Solution {
public:
TreeNode* traversal (vector<int>& inorder, vector<int>& postorder) {
// 判断数组大小
if (postorder.size() == 0)
{
return NULL;
}
// 后序遍历数组最后一个元素,就是当前的中间节点
int rootValue = postorder[postorder.size() - 1];
TreeNode* root = new TreeNode(rootValue);
// 叶子节点
if (postorder.size() == 1) return root;
// 找到中序遍历的切割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); delimiterIndex++) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 切割中序数组
// 左闭右开区间:[0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// [delimiterIndex + 1, end)
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end() );
// postorder 舍弃末尾元素
postorder.resize(postorder.size() - 1);
// 切割后序数组
// 依然左闭右开,注意这里使用了左中序数组大小作为切割点
// [0, leftInorder.size)
vector<int> leftPostorder(postorder.begin(), postorder.begin() + leftInorder.size());
// [leftInorder.size(), end)
vector<int> rightPostorder(postorder.begin() + leftInorder.size(), postorder.end());
root->left = traversal(leftInorder, leftPostorder);
root->right = traversal(rightInorder, rightPostorder);
return root;
}
TreeNode* buildTree(vector<int>& inorder, vector<int>& postorder) {
if (inorder.size() == 0 || postorder.size() == 0) return NULL;
return traversal(inorder, postorder);
}
};
105.从前序与中序遍历序列构造二叉树
class Solution {
public:
TreeNode* traversal(vector<int>& preorder, vector<int>& inorder) {
if (preorder.size() == 0) {
return nullptr;
}
int rootValue = preorder[0];
TreeNode* root = new TreeNode(rootValue);
// 叶子节点
if (preorder.size() == 1) {
return root;
}
// 找到中序遍历中的分割点
int delimiterIndex;
for (delimiterIndex = 0; delimiterIndex < inorder.size(); ++delimiterIndex) {
if (inorder[delimiterIndex] == rootValue) break;
}
// 中序遍历的左子树部分 [0, delimiterIndex)
vector<int> leftInorder(inorder.begin(), inorder.begin() + delimiterIndex);
// 中序遍历的右子树部分 [delimiterIndex + 1, inorder.size())
vector<int> rightInorder(inorder.begin() + delimiterIndex + 1, inorder.end());
// 前序遍历的左子树部分 [1, 1 + leftInorder.size())
vector<int> leftPreorder(preorder.begin() + 1, preorder.begin() + leftInorder.size() + 1);
// 前序遍历的右子树部分 [1 + leftInorder.size(), preorder.size())
vector<int> rightPreorder(preorder.begin() + leftInorder.size() + 1, preorder.end());
root->left = traversal(leftPreorder, leftInorder);
root->right = traversal(rightPreorder, rightInorder);
return root;
}
TreeNode* buildTree(vector<int>& preorder, vector<int>& inorder) {
if (preorder.size() == 0 || inorder.size() == 0) {
return nullptr;
}
return traversal(preorder, inorder);
}
};