problem
有一个长度为n的数组a。现有m组操作。
操作1:将区间[l,r]内的所有数字都整除2。
操作2:输出区间[l,r]内所有数字的和。
Input
第一行输入两个整数n,m(1<=n<=200000,1<=m<=200000)
第二行n个整数,表示数组a (0<=a[i]<=10^9)
接下来m行,每行三个整数op,l,r
——若op=1,表示操作1,将[l,r]内所有数字整除2
——若op=2,表示操作2,输出[l,r]内所有数字的和
Output
对于所有的操作2,输出结果。
Sample Input
5 5
3 4 9 2 7
2 3 4
1 4 5
2 1 5
1 3 4
2 3 5
Sample Output
11
20
7
思路
注意到每个数除2求和与求和和除2的结果是不同的,所以lazy标记在这里行不通。(lazy标记就是说整个区间的update先不更新到底,对于本题不更新到底的sum结果是错误的)。
解决办法:不打lazy,更新到点。那这样复杂度不符,注意到一个1e9的数除以2到30次以上就为0,不会改变。
所以令设一个flag数组标记区间里是否都为0,如果是,除法操作根本不用做,sum也不用改变了。于是在复杂度上得到优化。
核心代码
void PushUp(int rt){
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
flag[rt]=flag[rt<<1] | flag[rt<<1|1];//都为0时才为0
}
void update(int L,int R,int l,int r,int rt){
if(flag[rt]==0) return ;//关键(flag=0表示区间里的数均为0了)
if(l==r){
sum[rt]/=2;//除2
flag[rt]=(sum[rt]>0);//更新flag标记
return ;
}
int m=(l+r)>>1;
if(L<=m) update(L,R,lson);
if(R>m) update(L,R,rson);
PushUp(rt);//不要忘记pushup
}
代码示例
#include<iostream>
#include<cstdio>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
typedef long long ll;
const int maxn=200010;
ll sum[maxn<<2];
bool flag[maxn<<2];
void PushUp(int rt){
sum[rt]=sum[rt<<1]+sum[rt<<1|1];
flag[rt]=flag[rt<<1] | flag[rt<<1|1];//都为0时才为0
}
void build(int l,int r,int rt){
if(l==r){
scanf("%d",&sum[rt]);
flag[rt]=(sum[rt]>0);//大于0 flag为1
return ;
}
int m=(l+r)>>1;
build(lson); build(rson);
PushUp(rt);
}
void update(int L,int R,int l,int r,int rt){
if(flag[rt]==0) return ;//关键(flag=0表示区间里的数均为0了)
if(l==r){
sum[rt]/=2;//除2
flag[rt]=(sum[rt]>0);//更新flag标记
return ;
}
int m=(l+r)>>1;
if(L<=m) update(L,R,lson);
if(R>m) update(L,R,rson);
PushUp(rt);//不要忘记pushup
}
ll query(int L,int R,int l,int r,int rt){
if(L<=l&&r<=R) return sum[rt];
int m=(l+r)>>1;
ll ret=0;
if(L<=m) ret+=query(L,R,lson);//这里是求和,也可以维护最值
if(R>m) ret+=query(L,R,rson);
return ret;
}
int main()
{
//ios::sync_with_stdio(false);
int m,n;
scanf("%d %d",&n,&m);
build(1,n,1);
int op,a,b;
for(int i=1;i<=m;++i){
scanf("%d %d %d",&op,&a,&b);
if(op==1){
update(a,b,1,n,1);
}
else{
printf("%lld\n",query(a,b,1,n,1));
}
}
return 0;
}