17AHU排位赛1 D题(线段树除2)

problem

有一个长度为n的数组a。现有m组操作。
操作1:将区间[l,r]内的所有数字都整除2。
操作2:输出区间[l,r]内所有数字的和。

Input

第一行输入两个整数n,m(1<=n<=200000,1<=m<=200000)
第二行n个整数,表示数组a (0<=a[i]<=10^9)
接下来m行,每行三个整数op,l,r
——若op=1,表示操作1,将[l,r]内所有数字整除2
——若op=2,表示操作2,输出[l,r]内所有数字的和

Output

对于所有的操作2,输出结果。

Sample Input

5 5
3 4 9 2 7
2 3 4
1 4 5
2 1 5
1 3 4
2 3 5

Sample Output

11
20
7


思路

注意到每个数除2求和与求和和除2的结果是不同的,所以lazy标记在这里行不通。(lazy标记就是说整个区间的update先不更新到底,对于本题不更新到底的sum结果是错误的)。

解决办法:不打lazy,更新到点。那这样复杂度不符,注意到一个1e9的数除以2到30次以上就为0,不会改变。

所以令设一个flag数组标记区间里是否都为0,如果是,除法操作根本不用做,sum也不用改变了。于是在复杂度上得到优化。

核心代码

void PushUp(int rt){
    sum[rt]=sum[rt<<1]+sum[rt<<1|1];
    flag[rt]=flag[rt<<1] | flag[rt<<1|1];//都为0时才为0
}


void update(int L,int R,int l,int r,int rt){
    if(flag[rt]==0) return ;//关键(flag=0表示区间里的数均为0了)
    if(l==r){
        sum[rt]/=2;//除2
        flag[rt]=(sum[rt]>0);//更新flag标记
        return ;
    }
    int m=(l+r)>>1;
    if(L<=m) update(L,R,lson);
    if(R>m) update(L,R,rson);
    PushUp(rt);//不要忘记pushup
}


代码示例

#include<iostream>
#include<cstdio>
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
typedef long long ll;
const int maxn=200010;

ll sum[maxn<<2];
bool flag[maxn<<2];

void PushUp(int rt){
    sum[rt]=sum[rt<<1]+sum[rt<<1|1];
    flag[rt]=flag[rt<<1] | flag[rt<<1|1];//都为0时才为0
}

void build(int l,int r,int rt){
    if(l==r){
        scanf("%d",&sum[rt]);
        flag[rt]=(sum[rt]>0);//大于0 flag为1
        return ;
    }
    int m=(l+r)>>1;
    build(lson); build(rson);
    PushUp(rt);
}

void update(int L,int R,int l,int r,int rt){
    if(flag[rt]==0) return ;//关键(flag=0表示区间里的数均为0了)
    if(l==r){
        sum[rt]/=2;//除2
        flag[rt]=(sum[rt]>0);//更新flag标记
        return ;
    }
    int m=(l+r)>>1;
    if(L<=m) update(L,R,lson);
    if(R>m) update(L,R,rson);
    PushUp(rt);//不要忘记pushup
}

ll query(int L,int R,int l,int r,int rt){
    if(L<=l&&r<=R) return sum[rt];
    int m=(l+r)>>1;
    ll ret=0;
    if(L<=m) ret+=query(L,R,lson);//这里是求和,也可以维护最值
    if(R>m) ret+=query(L,R,rson);
    return ret;
}

int main()
{
    //ios::sync_with_stdio(false);
    int m,n;
    scanf("%d %d",&n,&m);
    build(1,n,1);
    int op,a,b;
    for(int i=1;i<=m;++i){
        scanf("%d %d %d",&op,&a,&b);
        if(op==1){
            update(a,b,1,n,1);
        }
        else{
            printf("%lld\n",query(a,b,1,n,1));
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值