Alice和Bob赌糖果(概率、经典)

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/Feynman1999/article/details/79111687

problem

Alice和Bob赌糖果。规则是这样的:Alice从[ l, r]中随机抽一个数,Bob从[ L, R]中随机抽一个数,谁抽的数大谁就赢,输的一方给另一方1颗糖(平局不用给糖),他们会一直赌下去直到有一方没有糖果为止。

Alice有n颗糖果,Bob有m颗糖果,求Alice将Bob的糖果赢完的概率。

Input

第一行3个整数n, l, r。
第二行3个整数m, L, R。

Output

Alice将Bob糖果赢完的概率,结果保留5位小数。

Sample Input1

1 1 3
1 1 2

Sample Output1

0.75000

Sample Input2

0 1 100
1 1 100

Sample Output2

0.00000

hint

0 <= n,m <=1e5 , n+m > 0
1 <= l <= r <= 100,1 <= L <= R <= 100

思路

先分多种情况计算出去除平局后Alice每局获胜的概率p,然后设Alice将Bob的糖果赢完的概率为k,列出:km(1p)=(1k)np 即可解出k。


代码示例

#include<bits/stdc++.h>
using namespace std;

int main()
{
    int n,m,l,r,L,R;
    int t1,t2;
    double p;
    t1=t2=0;
    scanf("%d %d %d %d %d %d",&n,&l,&r,&m,&L,&R);
    if(n==0)  printf("0.00000\n");
    else if(m==0) printf("1.00000\n");
    else{
        for(int i=l;i<=r;++i){
            for(int j=L;j<=R;++j){
                if(i>j) t1++;
                if(i<j) t2++;
            }
        }
        if(t1==0) printf("0.00000\n");
        else{
            p=t1*1.0/((t1+t2)*1.0);
            printf("%.5f\n",n*p*1.0/(m-m*p+n*p));
        }
    }
    return 0;
}

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页