傅里叶级数、傅里叶变换简记

傅里叶级数(Fourier series)

任何周期函数都可以写成三角函数之和

首先常函数也是周期函数,且其周期是任意实数,分解可能需要它

任意函数都可以分解为奇偶函数之和

f(x)=f(x)+f(x)2+f(x)f(x)2 f ( x ) = f ( x ) + f ( − x ) 2 + f ( x ) − f ( − x ) 2

sin(x) s i n ( x ) cos(x) c o s ( x ) 是奇函数和偶函数

f(x) f ( x ) 周期为T, sin(2πnTx) s i n ( 2 π n T x ) cos(2πnTx) c o s ( 2 π n T x ) nN n ∈ N 这些函数周期都可以为T

通过调整这一堆周期函数的振幅,再加上常函数,就可以组合成 f(x) f ( x )

f(x)=C+n=1(ansin(2πnTx)+bncos(2πnTx)),C\R f ( x ) = C + ∑ n = 1 ∞ ( a n s i n ( 2 π n T x ) + b n c o s ( 2 π n T x ) ) , C ∈ \R

下面问题是如何确定 C,an,bn C , a n , b n


借助复数,我们可以更简洁地表达一些东西,尤其涉及到旋转操作 ,下面对其做一些介绍

首先,先考虑复平面上的 eit e i t

img

很自然,t每过 2π 2 π 旋转一圈

加个 w w ,即eiwt ,改变旋转的周期

把虚部展开(时域),就是 tsin(wt) t ∼ s i n ( w t ) 的图像

img

总的来说,可以将 eiwt,sin(wt),cos(wt) e i w t , s i n ( w t ) , c o s ( w t ) 视为向量


现在假设有函数 g(t)=sin(t)+sin(2t) g ( t ) = s i n ( t ) + s i n ( 2 t )

先介绍向量点积

函数向量点积的定义是 f(x)g(x)=T0f(x)g(x)dx f ( x ) ⋅ g ( x ) = ∫ 0 T f ( x ) g ( x ) d x

其中T是周期

根据点积的定义,可以得到 sin(t)sin(2t)=2π0sin(t)sin(2t)=0 s i n ( t ) ∗ s i n ( 2 t ) = ∫ 0 2 π s i n ( t ) s i n ( 2 t ) = 0

由点积的几何意义,说明了这两个函数向量线性无关,是正交基

于是可以将 g(t) g ( t ) 理解成 g(t)=1sin(t)+1sin(2t) g ( t ) = 1 ∗ s i n ( t ) + 1 ∗ s i n ( 2 t )

即在该正交基下坐标是(1,1)

如何求正交基坐标呢?

再看个例子,假设 w⃗ =2u⃗ +3v⃗  w → = 2 u → + 3 v →

其中 u⃗ =(11) u → = ( − 1 1 ) v⃗ =(11) v → = ( 1 1 ) 显然这两个向量是正交基

img

w的在基下的坐标为(2,3)

计算方法是(以在基 u⃗  u → 示例)

\frac{\vec{w_{}}\cdot \vec{u_{}}}{\vec{u_{}}\cdot \vec{u_{}}}=\frac{(1,5)\cdot (-1,1)}{(-1,1)\cdot (-1,1)}=2\

上面方法可以类比到 sin(nt) s i n ( n t )

g(t)=sin(t)+sin(2t) g ( t ) = s i n ( t ) + s i n ( 2 t )

g(t) g ( t ) sin(t) s i n ( t ) 下的坐标为

\frac{g(t)\cdot sin(t)}{sin(t)\cdot sin(t)}=\frac{\int _{0}^{2\pi }g(x)sin(x)dx}{\int _{0}^{2\pi }sin^2(x)dx}=1\

更一般的

f(x)=C+n=1(ansin(2πnTx)+bncos(2πnTx)),C\R f ( x ) = C + ∑ n = 1 ∞ ( a n s i n ( 2 π n T x ) + b n c o s ( 2 π n T x ) ) , C ∈ \R

\displaystyle f(x)=\underbrace{C}_{基1ä¸‹çš„åæ ‡}\cdot 1+\sum _{​{n=1}}^{\infty }\left(\underbrace{a_{n}}_{å¯¹åº”åŸºçš„åæ ‡}cos({\frac{2\pi n}{T}x})+\underbrace{b_{n}}_{å¯¹åº”åŸºçš„åæ ‡}sin({\frac{2\pi n}{T}x})\right)\

也就是说向量 f(x) f ( x ) 是以下正交基的线性组合:(注意不是3个额,n越大,拟合越精确

{ 1,cos({\frac{2\pi n}{T}x}),sin({\frac{2\pi n}{T}x})} \

于是可以得到

a_ n=\frac{\int _{0}^{T}f(x)cos({\frac{2\pi n}{T}x})dx}{\int _{0}^{T}cos^2({\frac{2\pi n}{T}x})dx}=\frac{2}{T}\int _{0}^{T}f(x)cos({\frac{2\pi n}{T}x})dx\

b_ n=\frac{\int _{0}^{T}f(x)sin({\frac{2\pi n}{T}x})dx}{\int _{0}^{T}sin^2({\frac{2\pi n}{T}x})dx}=\frac{2}{T}\int _{0}^{T}f(x)sin({\frac{2\pi n}{T}x})dx\

C C 也可以通过点积求出

C=0Tf(x)dx0T11dx=0Tf(x)dxT

C=a0/2 C = a 0 / 2

即最终结果为

\displaystyle f(x)={\frac{a_{0}}{2}}+\sum _{​{n=1}}^{\infty }\left(a_{n}\cos ({\tfrac {2\pi nx}{T}})+b_{n}\sin ({\tfrac {2\pi nx}{T}})\right)\

其中

\displaystyle a_{n}={\frac{2}{T}}\int _{​{x_{0}}}^{​{x_{0}+T}}f(x)\cdot \cos ({\tfrac {2\pi nx}{T}})\ dx, n\in { 0} \cup \mathbb {N}\ b_{n}={\frac{2}{T}}\int _{​{x_{0}}}^{​{x_{0}+T}}f(x)\cdot \sin ({\tfrac {2\pi nx}{T}})\ dx, n\in \mathbb {N} \


上面的傅里叶级数,可以写成复数的形式

根据欧拉公式 eiθ=cosθ+isinθ e i θ = c o s θ + i s i n θ

可以推出

 \sin \theta ={\frac{e^{​{i\theta }}-e^{​{-i\theta }}}{2i}} \ \cos \theta ={\frac{e^{​{i\theta }}+e^{​{-i\theta }}}{2}}

可以写出傅立叶级数的另外一种形式:

\displaystyle f(x)=\sum _{​{n=-\infty }}^{\infty }c_{n}\cdot e^{​{i{\tfrac {2\pi nx}{T}}}}\

其中

\displaystyle c_{n}={\frac{1}{T}}\int _{​{x_{0}}}^{​{x_{0}+T}}f(x)\cdot e^{​{-i{\tfrac {2\pi nx}{T}}}}\ dx\

解读:

\displaystyle f(x)=\sum _{​{n=-\infty}}^{\infty}\underbrace{c_{n}}_{å¯¹åº”åŸºçš„åæ ‡}\cdot \underbrace{e^{​{i{\tfrac {2\pi nx}{T}}}}}_{正交基}\

对于复数函数,定义的点积为:

f(x)\cdot g(x)=\int _{0}^{T}\overline{f(x)}g(x)dx\

其中, f(x),g(x) 为复数函数, \overline{f(x)}f(x) 的共轭,所以 c_ n 的代数表达式中有一个负号。

这样定义点积是为了保证:

\vec{x}\cdot \vec{x}\geq 0\


傅里叶级数的拟合

img

n越大,更高频率的函数参与,拟合度越高

频域图高度则代表在这个频率上的振幅,也就是这个基上的坐标分量

傅里叶变换(Fourier transform)

https://www.bilibili.com/video/av19141078?from=search&seid=12296262967335268730

img

img

img

img

参考:马同学 3Blue1Brown

  • 3
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值