数论概论读书笔记 10.同余式、幂与欧拉公式

同余式、幂与欧拉公式

费马小定理很漂亮 ap11(mod p) a p − 1 ≡ 1 ( m o d   p )

但限制P是素数且 pa p ∤ a

如果p是合数,即使a、p互质,结论也不正确了

因此,研究是否有依赖模m的指数使得 a???1(mod m) a ? ? ? ≡ 1 ( m o d   m )

首先,如果a的某个幂模m余1,则a和m必互质(可由线性方程定理证明)

这再次提醒我们观察与m**互素的数**的集合:

a:1am,gcd(a,m)=1 a : 1 ⩽ a ⩽ m , g c d ( a , m ) = 1

在1~m之间与m互质的整数个数 是个重要的量,我们赋予这个量一个名称:
φ(m)={a:1am,gcd(a,m)=1} φ ( m ) = { a : 1 ⩽ a ⩽ m , g c d ( a , m ) = 1 }

函数 φ(m) φ ( m ) 叫做 欧拉函数

注意p是素数时,每个整数 1a<p 1 ⩽ a < p 都与p互素,所以对于素数p有公式

φ(p)=p1 φ ( p ) = p − 1

我们设法模拟费马小定理的证明。例如,假设要求7的幂次模10余1,不取所有1~9,而是恰好取与10互素的数,它们是
1,3,7,9mod 10) 1 , 3 , 7 , 9 ( m o d   10 )

如果用7去乘每个数可得
717(mod 10)731(mod 10)779(mod 10)793(mod 10) 7 ⋅ 1 ≡ 7 ( m o d   10 ) 7 ⋅ 3 ≡ 1 ( m o d   10 ) 7 ⋅ 7 ≡ 9 ( m o d   10 ) 7 ⋅ 9 ≡ 3 ( m o d   10 )

得到的4个数是之前的4个数的重排!如果将它们乘起来就得到相同的乘积
(71)(73)(77)(79)1379(mod 10)74(1379)1379(mod 10) ( 7 ⋅ 1 ) ( 7 ⋅ 3 ) ( 7 ⋅ 7 ) ( 7 ⋅ 9 ) ≡ 1 ⋅ 3 ⋅ 7 ⋅ 9 ( m o d   10 ) 7 4 ( 1 ⋅ 3 ⋅ 7 ⋅ 9 ) ≡ 1 ⋅ 3 ⋅ 7 ⋅ 9 ( m o d   10 )

由于 1379 1 ⋅ 3 ⋅ 7 ⋅ 9 10 10 是互质的,因此可以消去,所以得到 741(mod 10) 7 4 ≡ 1 ( m o d   10 ) 这个形式和费马小定理很像了!

考虑这里的4和费马小定理中的 p1 p − 1 的共同点, 都是1~m中与m互质的数的个数!即欧拉函数 φ(m) φ ( m )

定理10.1(欧拉公式). 如果 gcd(a,m)=1 g c d ( a , m ) = 1 ,则

aφ(m)1(mod m) a φ ( m ) ≡ 1 ( m o d   m )

引理10.2 如果 gcd(a,m)=1 g c d ( a , m ) = 1 ,则数列
b1a,b2a,b3a,...,bφ(m)a(mod m) b 1 a , b 2 a , b 3 a , . . . , b φ ( m ) a ( m o d   m )

与数列
b1,b2,b3,...,bφ(m)(mod m) b 1 , b 2 , b 3 , . . . , b φ ( m ) ( m o d   m )

相同,尽管它们可能次序不同。

引理的证明 注意到 bi b i 和a均与m是互质的,则 bia b i a 也与m互质,又因为所有与m互质的数%m后依然与m互质 (如果x-km与m不互质,则x与m也不互质了) 所以数列 b1a,b2a,b3a,...,bφ(m)a(mod m) b 1 a , b 2 a , b 3 a , . . . , b φ ( m ) a ( m o d   m ) 同余于数列 b1,b2,b3,...,bφ(m)(mod m) b 1 , b 2 , b 3 , . . . , b φ ( m ) ( m o d   m ) 中的某一个数(因为就这 φ(m) φ ( m ) )。又每个数列有 φ(m) φ ( m ) 个数 ,因此,如果能进一步证明第一个数列中的数对于模m不同,则就得到两个数列(重排后)相同。 从第一个数列中任选两个数,假设它们是同余的,那么意味着 m|a(bibj) m | a ( b i − b j ) 由于a,m是互质的,因而有 m|bibj m | b i − b j bi,bj b i , b j 在1与m之间,这说明 bi=bj b i = b j 即第一个数列中的数模m是不同的。引理证毕。

证明欧拉公式

由引理知第一个数列中数的乘积等于第二个数列中数的乘积:

(b1a)(b2a)(b3a) ... (bφ(m)a)b1b2b3bφ(m)(mod m) ( b 1 a ) ⋅ ( b 2 a ) ⋅ ( b 3 a ) ⋅   . . .   ⋅ ( b φ ( m ) a ) ≡ b 1 ⋅ b 2 ⋅ b 3 ⋅ ⋅ ⋅ b φ ( m ) ( m o d   m )

左边提出 φ(m) φ ( m ) 个a得到 aφ(m)BB(mod m) a φ ( m ) B ≡ B ( m o d   m ) 其中 B=b1b2b3bφ(m) B = b 1 b 2 b 3 ⋅ ⋅ ⋅ b φ ( m )

由于每个 b b 与m都是互质的,因此B与m也是互质的 因此B可以消去 于是得到

aφ(m)1(mod m) a φ ( m ) ≡ 1 ( m o d   m )

证毕。

我们喜欢互质,其往往有不错的性质

习题

1.对于上面的 B B ,试证明B1(mod m) Bm1(mod m) B ≡ m − 1 ( m o d   m ) 。并寻找m的模式(何时为1,何时为m-1)

hdu4910

威尔逊定理 Wilson定理的若干探讨

当m为素数时,B= (m1)! ( m − 1 ) ! 由威尔逊定理, (m1)!m1(mod m) ( m − 1 ) ! ≡ m − 1 ( m o d   m )

结论:

将m分解分所有质因子相乘,质因子2个数为a,其余质因子个数为b, ans=(a==0?a:a1)+b a n s = ( a == 0 ? a : a − 1 ) + b ; 当 ans a n s <2时结果为m-1,否则结果为1.

2.如果对每个整数 a a (gcd(a,m)=1) ,同余式 am11(mod m) a m − 1 ≡ 1 ( m o d   m ) 则称合数 m为卡米歇尔数(carmichael)

(1)验证m=561=3 * 11 * 17是卡米歇尔数。

因为561=3 * 11 * 17,若(a,561)=1,则(a,3)=(a,11)=(a,17)=1,由费马小定理知, a21(mod 3) a 2 ≡ 1 ( m o d   3 ) , a101(mod 11) a 10 ≡ 1 ( m o d   11 ) , a161(mod 17) a 16 ≡ 1 ( m o d   17 ) 由于[2,10,16]=80,故 a801(mod 3) a 80 ≡ 1 ( m o d   3 ) , a801(mod 11) a 80 ≡ 1 ( m o d   11 ) , a801(mod 17) a 80 ≡ 1 ( m o d   17 ) 因此 a801(mod 561) a 80 ≡ 1 ( m o d   561 ) a560=(a80)71(mod 561) a 560 = ( a 80 ) 7 ≡ 1 ( m o d   561 )

(2)是否有无穷多个卡米歇尔数?

是 详见 (OEIS A002997)

注:

m是卡米歇尔数的充分必要条件是:

①m无平方因子;

②m的每一个素因子p有 p1 | m1 p − 1   |   m − 1

③m是奇数,且至少有三个不同的素因子。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值