- 博客(12)
- 资源 (3)
- 收藏
- 关注
原创 一些喜欢的诗词句子
原文链接:一些喜欢的诗词句子·其一一些喜欢的诗词句子·其二清·纳兰性德《酒泉子·谢却荼蘼》谢却荼蘼,一片月明如水。篆香消,犹未睡,早鸦啼。嫩寒无赖罗衣薄,休傍阑干角。最愁人,灯欲落,燕还飞。《林深时见鹿》你说:林深时见鹿,海蓝时见鲸,梦醒时见你。可我:林深时雾起,海蓝时浪涌,梦醒时夜续。不见鹿,不见鲸,也不见你。宋·柳永《雨霖铃·寒蝉凄切》今宵酒醒何处?杨柳岸,...
2018-11-06 09:48:50 1092
原创 妙色王因缘经
大唐三藏法师义净 奉制 译 如是我闻: 一时,薄伽梵在室罗伐城逝多林给孤独园。 尔时,世尊从定起已,为诸四众演说无上甘露妙法。时有无量百千大众前后围绕,诸根不动听闻法要。 时诸苾刍既见大众身心寂静殷勤听法,咸皆有疑白佛言:“世尊!唯愿慈悲为断疑网;如来大师无上法王,今此坐中听法诸人,何故殷勤身心不动,听闻妙法如饮甘露?” 世尊告曰:“汝等苾刍,我于往昔为求法...
2018-07-11 22:42:16 1319
原创 妙色王求法偈
佛曰:由爱故生忧,由爱故生怖,若离于爱者,无忧亦无怖。 伽叶:如何能为离于爱着? 佛曰:无我相,无人相,无众生相,无寿者相,即为离于爱着。 伽叶:释尊,人生八苦,生、老、病、死、行、爱别离、求不得、怨憎会。如何无我相,无欲无求? 佛曰:爱别离,怨憎会,撒手西归,全无是类。不过是满眼空花,一片虚幻。 伽叶:释尊,世人业力无为,何易? 佛曰:种如是因,收如是果,一切唯心造。 伽叶:世人心...
2018-07-10 12:00:20 2761
原创 阿炳故居小记
昨晚喝了点酒突然就想去阿炳故居看看,说走便走,今早起了个大早。由于早上没有去无锡的动车,就去客运中心买了六点五十的汽车票,这也算是我第一次说走就走的旅行,值得纪念一下哈。 嘉善到无锡还挺远的,大巴上高速也要三个多小时才到。从无锡车站到阿炳故居也就两个多公里,我也懒得走了,直接打的过去。阿炳故居在崇安寺步行街一个不起眼的小角落里,我找了好久才找到(苦笑)。附上一张入口的照片吧,跟其他门店比起来...
2018-06-16 21:53:49 73
原创 开学啦,上工啦
指尖流逝的时光 又很久没写了,本想年前发一篇,写着写着不想发了,于是就放弃了。家里没网,想法也没得发。 放了十来天的假吧,晚上八点多到家的,一到家就跟父亲喝了约莫两斤的黄酒。自家酿的酒就是好喝,就是那个味儿。醉了,醉的一塌糊涂,倒头就睡,直到第二天早晨。当太阳刚刚升起,阳光照进窗户,我便醒了。自小便是如此,天亮就醒,不管什么时节什么天气睡的早晚,所以常常白天没精神。 第二天...
2018-02-24 13:22:54 68
原创 《Ana》—2017.12.13
这首《Ana》是KEY社春夏秋冬四部曲中春之《CLANNAD》的插曲,这个是2005年的动画,也是我的入宅神作(管他是什么时候的番,只要喜欢就行了,现在已经深陷ACG的坑无法自拔了,OST中除了这首歌还有好几首喜欢的歌,以后有机会慢慢分享。顺便安利一波KEY社四部曲中动画化的三个:《CLANNAD》当然有,夏之《AIR》,冬之《KANON》,其实秋之《ONE》也有OVA,不过那是18x的,想看的可...
2017-12-13 20:41:30 86
原创 记一首喜欢的英国民歌
《Scarborough Fair》Scarborough Fair.png主歌:Are you going to Scarborough Fair?你要去斯卡伯勒集市吗?Parsley, sage, rosemary, and thyme;香芹、鼠尾草、迷迭香和百里香;Remember me to the one who lives there,请代我问候住在那里的一个...
2017-12-12 08:42:59 92
原创 MyBatis实现模糊查询的几种方式
在学习MyBatis过程中想实现模糊查询,可惜失败了。后来上百度上查了一下,算是解决了。记录一下MyBatis实现模糊查询的几种方式。 数据库表名为test_student,初始化了几条记录,如图: 起初我在MyBatis的mapper文件中是这样写的: <select id="searchStudents" resultType="com.example.e
2017-07-03 09:40:46 106239 25
原创 数论概论学习笔记(二)——费马大定理简述
费马大定理 当正整数n>2n>2 时,关于x,y,zx,y,z 的不定方程 xn+yn=znx^n + y^n = z^n 没有正整数解。又叫Fermat’s Last Theorem. 该定理由17世纪法国数学家Pierre de Fermat提出,故以费马之名命名。
2016-12-07 16:57:21 1161
原创 数论概论学习笔记(一)——勾股数
版权声明:本文为博主原创文章,未经博主允许不得转载。1. Pythagoras theorem(勾股定理)一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。 如果设直角三角形的两条直角边长度分别是a和b,斜边长度是c,那么可以用数学语言表达: a2+b2=c2a^{2}+b^{2}=c^{2}满足这个等式的三元数组(a,b,c)且数a、b、c互质的数称为勾股数。 可证a、
2016-12-04 15:53:49 1136
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人