数论概论读书笔记 20.模p平方剩余

模p平方剩余

img

观察上面这张表,可以发现上下的对称性,字符化描述为:

p2+b22pb=(pb)2b2(mod p) p 2 + b 2 − 2 p b = ( p − b ) 2 ≡ b 2 ( m o d   p )

因此,若要列出模 p p 的所有(非零)平方剩余,只需要计算出其中的一半:
12 (mod p),22 (mod p),...,(p12)2 (mod p)

我们的目的是发现模式,以便用来区分模 p p 平方剩余非平方剩余

最后将会导出整个数论中最漂亮的定理之一—二次互反律

一些定义:

  • 与一个平方数模p同余的非零数称为模 p p 的二次剩余
  • 不与任何一个平方数模p同余的数称为模 p p 的二次非剩余
  • 将二次剩余简记为QR,二次非剩余简记为 NR N R
    • 与0模 p p 同余的数既不是QR,也不是 NR N R
    • 定理 p p 为一个奇素数,则恰有p12个模 p p 的二次剩余,且恰有p12个模 p p 的二次非剩余。

      由前面的结论知道,只要证明12,22,...,(p12)2 mod p是两两不同的。

      假设 b1,b2 b 1 , b 2 [1,p12] [ 1 , p − 1 2 ] 之间的数

      且满足 b21b22 (mod p) b 1 2 ≡ b 2 2   ( m o d   p )

      我们要证明 b1=b2 b 1 = b 2

      由于 b21b22 (mod p) b 1 2 ≡ b 2 2   ( m o d   p ) ,得到 p | (b21b22)=b1b2)(b1+b2) p   |   ( b 1 2 − b 2 2 ) = ( b 1 − b 2 ) ( b 1 + b 2 )

      然而 b1+b2 b 1 + b 2 显然不能被 p p 整除

      所以b1b2=0

      证毕。

      QR与NR有什么关系呢?

      一个不很难想到的结论是 QRQR=QR Q R ∗ Q R = Q R

      因为平方数乘平方数仍为平方数。所以两个二次剩余乘积模 p p 仍为二次剩余。

      那么其他的组合呢?

      经过一些小的表观察,可以得到:

      QRQR=QR,QRNR=NR,NRNR=NR

      在验证后面两个关系之前,我们先来看下原根与二次剩余的关系。

      g g 是模p的一个原根,辣么 g g 的幂:

      g,g2,g3,...,gp1

      可以给出 p p 的所有非零剩余。即[1,p1]。其中一半是二次剩余,一半是二次非剩余。

      如何确定哪些是 QR Q R ,哪些是 NR N R 呢?

      显然 g g 的每个偶次幂是一个QR,即 g2k g 2 k

      注意到在(4)中恰有一半是偶次幂,所以 g g 的偶次幂给出了所有的二次剩余。而剩下的奇次幂必定是二次非剩余。

      同时,也可以用指标来描述,二次剩余是指标I(a)为偶数的那些数 a a

      二次非剩余是指标I(a)为奇数的那些数 a a

      定理 二次剩余乘法法则—版本1

      p为素数,则

      • 两个模 p p 的二次剩余的积是二次剩余
      • 二次剩余与二次非剩余的积是二次非剩余
      • 两个二次非剩余的积是二次剩余


      QRQR=QR,QRNR=NR,NRNR=NR

      证明 对与 p p 互素的任意两个数a,b,由指标的乘积法则知 I(ab)I(a)+I(b)mod p1 I ( a b ) ≡ I ( a ) + I ( b ) m o d   p − 1

      从而有 I(ab)I(a)+I(b)mod 2 I ( a b ) ≡ I ( a ) + I ( b ) m o d   2

      后面的证明就很自然了。可以讨论 (5) ( 5 ) 中的三种情况。

      对于 (5) ( 5 ) 式,你肯定会想到 +1,1 + 1 , − 1 这种

      许多年前,勒让德也想到了,而且还搞了点东西

      a a p的勒让德符号是

      (ap)={1ap1ap ( a p ) = { 1 若 a 是 模 p 的 二 次 剩 余 − 1 若 a 是 模 p 的 二 次 非 剩 余

      定理 二次剩余乘法法则—版本2(使用勒让德符号)

      p p 为素数,则

      (ap)(bp)=(abp)

      勒让德符号使计算可以更直观,比如

      (7597)=(35597)=(397)(597)(597) ( 75 97 ) = ( 3 ⋅ 5 ⋅ 5 97 ) = ( 3 97 ) ( 5 97 ) ( 5 97 )


      (597)(597)=1 ( 5 97 ) ( 5 97 ) = 1 ( 总 是 如 此 )

      所以
      (7597)=(397)=13QR ( 75 97 ) = ( 3 97 ) = 1 ( 3 是 Q R )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值