知识点 - 二次剩余

知识点 - 二次剩余

解决问题类型:

求模意义下的平方根

一些公式推导有用

定义

q被称作模n的二次剩余quadratic residue 当且仅当存在x使得:
x 2 = q ( m o d   n ) x^2=q(mod\ n) x2=q(mod n)
否则q被称作二次非剩余quadratic nonresidue

性质

两个二次剩余的乘积还是二次剩余

模n的二次剩余的数量不会超过n/2 + 1

模质数的二次剩余

模2下,所有数都是二次剩余。下面的质数不包括2

模p下有(p-1)/2个二次剩余和二次非剩余。(不包括0)

欧拉准则Eulers criterion 可以用来判定某个数是不是模p的二次剩余:

a p − 1 2 ≡ {       1 ( m o d p )  if there is an integer  x  such that  a ≡ x 2 ( m o d p ) − 1 ( m o d p )  if there is no such integer. {\displaystyle a^{\tfrac {p-1}{2}}\equiv {\begin{cases}\;\;\,1{\pmod {p}}&{\text{ if there is an integer }}x{\text{ such that }}a\equiv x^{2}{\pmod {p}}\\-1{\pmod {p}}&{\text{ if there is no such integer.}}\end{cases}}} a2p1{1(modp)1(modp) if there is an integer x such that ax2(modp) if there is no such integer.

模p下,二次剩余的逆元是二次剩余;二次非剩余的逆元是二次非剩余。

模p下,两个非剩余的乘积是二次剩余,二次剩余乘二次非剩余是二次非剩余。

p ≡ 1 (mod 4) ,二次剩余的负数为二次剩余,二次非剩余的负数为二次非剩余。

p ≡ 3 (mod 4),二次剩余的负数为二次非剩余,二次非剩余的负数为二次剩余。

平方根公式

一种特解:

如果
p   m o d   4 = 3 , x 2   m o d   p = a p\ mod\ 4 =3,x^2\ mod\ p = a p mod 4=3x2 mod p=a

那么 x = ± p o w ( a , ( p + 1 ) / 4 , p ) x = ±pow(a, (p+1)/4, p) x=±pow(a,(p+1)/4,p)

模质数p时,二次剩余a有 1 + ( a ∣ p ) 1 + (a|p) 1+(ap)个根

模和数n时,将n分解成不同的质数,分别求解,然后用crt合并。根的个数就是分别模这些质数的个数乘积。

当然也可以看成高次同余方程求解

求一个二次剩余

[ 0 , p − 1 ] [0,p−1] [0,p1]随机挑选一个数,称其为 a a a ,定义 w = a 2 − n w=a^2-n w=a2n w p − 1 2 = − 1 w^{\tfrac {p-1}{2}}=-1 w2p1=1 ( a + w ) p + 1 2 (a+\sqrt w)^{\frac{p+1}{2}} (a+w )2p+1时一个二次剩余

有了最后一个定理,我们就可以通过随机选择a的值来找到一个满足条件的解。可以证明找到正解所需的次数的期望只有2.

struct field{
	int x,y;
	field(int a=0,int b=0){
		x=a;y=b;
	}
};
field operator*(field a,field b){return field(a.x*b.x%p+a.y*b.y%p*w%p,a.x*b.y%p+a.y*b.x%p);}

int ran(){
	static int seed=23333;
	return seed=((((((ll)seed^20030927)%p+330802)%p*9410)%p-19750115+p)%p^730903)%p;
}

int pows(int a,int b){
	int base=1;
	while(b){
		if(b&1) base=base*a%p;
		a=a*a%p;b/=2;
	}
	return base;
}

field powfield(field a,int b){
	field base=field(1,0);
	while(b){
		if(b&1) base=base*a;
		a=a*a;b/=2;
	}
	return base;
}

int legander(int x){
	int a=pows(x,(p-1)/2);
	if(a+1==p) return -1;
	return a;
}

int surplus(int x){
	int a;
	if(legander(x)==-1) return 0;
	while(1){
		a=ran()%p;
		w=((a*a-x)%p+p)%p;
		if(legander(w)==-1) break;
	}
	field b=field(a,1);
	b=powfield(b,(p+1)/2);
	return b.x;
}

复杂度:

l o g ( p ) log(p) log(p)

例题

2019牛客多校#9 B Quadratic equation 求模意义下二次方程。

给你

( x + y )   m o d   p = b (x + y)\ mod\ p = b (x+y) mod p=b

( x × y )   m o d   p = c (x \times y) \bmod p=c (x×y)modp=c

即解 x 2 − b x + c ≡ 0 x^2-bx+c\equiv 0 x2bx+c0

代码

#include<cstdio>
#define ll long long
const int mo=1e9+7,inv2=(mo+1)/2;
int Pow(int x,int n){
    int k=1;
    for (;n;n>>=1,x=(ll)x*x%mo)
        if (n&1) k=(ll)k*x%mo;
    return k;
}
int main(){
    int TEST;scanf("%d",&TEST);
    for (;TEST--;){
        int a,b;
        scanf("%d%d",&a,&b);
        int k=(((ll)a*a-4ll*b)%mo+mo)%mo;
        int v=Pow(k,(mo+1)/4);
        if ((ll)v*v%mo!=k){
            puts("-1 -1");continue;
        }
        int x=(ll)(v+a)*inv2%mo;
        int y=(a-x+mo)%mo;
        if (x>y) x^=y,y^=x,x^=y;
        printf("%d %d\n",x,y);
    }
}
  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Best KeyBoard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值