FFT的幅度和相位

本文深入探讨了快速傅里叶变换(FFT)的幅度和相位概念,通过三幅关键图表详细阐述了FFT如何在频域中表示信号的这些属性,对于理解和应用FFT在信号处理中的作用至关重要。
摘要由CSDN通过智能技术生成

% this script is used to explain the FFT function 
%  with the addtional <为什么要进行傅立叶变换>


%----------------------------------------------
%          Part1 Amplitude                     |
%----------------------------------------------


fs = 256;L =256; T=1/fs; %所以是1s的时长信号
t=(0:L-1)*T;
s=2+3*cos(2*pi*50*t-30*pi/180)+1.5*cos(2*pi*75*t+90*pi/180);
% i think the expression is clear enought to read
% what we do next is use a method to show the result


plot(t,s),xlabel('time(s)'),ylabel('Amplitude'),title('时域图');
% 时域图


complexAmplitude = fft(s);
fftA = abs(complexAmplitude);
fftA = fftA(1:L/2+1);
f = fs/2*lin
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值