Spark streaming 初探
一、原理和运行场景
Spark Streaming运行原理图如下:
Spark Streaming把Kafka、HDFS、Socket等系统作为流处理的数据来源,把输入的数据流用时间切片的方式把数据分为一个个小的Batch,然后把这些小的Batch交给Spark引擎处理。
官方wordcount示例代码:
package org.apache.spark.examples.streaming
import org.apache.spark.SparkConf
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.storage.StorageLevel
/**
* Counts words in UTF8 encoded, '\n' delimited text received from the network every second.
*
* Usage: NetworkWordCount <hostname> <port>
* <hostname> and <port> describe the TCP server that Spark Streaming would connect to receive data.
*
* To run this on your local machine, you need to first run a Netcat server
* `$ nc -lk 9999`
* and then run the example
* `$ bin/run-example org.apache.spark.examples.streaming.NetworkWordCount localhost 9999`
*/
object NetworkWordCount {
def main(args: Array[String]) {
if (args.length < 2) {
System.err.println("Usage: NetworkWordCount <hostname> <port>")
System.exit(1)
}
StreamingExamples.setStreamingLogLevels()
// Create the context with a 1 second batch size
val sparkConf = new SparkConf().setAppName("NetworkWordCount")
val ssc = new StreamingContext(sparkConf, Seconds(1))
// Create a socket stream on target ip:port and count the
// words in input stream of \n delimited text (eg. generated by 'nc')
// Note that no duplication in storage level only for running locally.
// Replication necessary in distributed scenario for fault tolerance.
val lines = ssc.socketTextStream(args(0), args(1).toInt, StorageLevel.MEMORY_AND_DISK_SER)
val words = lines.flatMap(_.split(" "))
val wordCounts = words.map(x => (x, 1)).reduceByKey(_ + _)
wordCounts.print()
ssc.start()
ssc.awaitTermination()
}
}
以上代码首先创建StreamContext对象,然后以1秒钟的时间间隔来进行Streaming流的Batchi划分。与此同时,通过socket的方式监听数据流,然后进行每秒的单词技术操作。下图清晰描述了运行流程:
二、Spark Streaming运行场景
2.1无状态操作
每次操作都只是计算当前时间切片的内容,如:每次只计算1秒钟时间切片中产生的数据的RDD
2.2有状态操作:updateStateByKey
不断地把当前和历史的时间切片的RDD累加计算,随着时间的流逝,计算的数据规模越来越大。
2.3window操作
针对特定时间段并以特定时间间隔为单位进行的滑动操作。例如:以1秒钟为时间切片的情况下,统计最近10分钟内Streaming产生的数据,并且每隔2分钟进行一次更新。