描述
我的生日要到了!根据习俗,我需要将一些派分给大家。我有N个不同口味、不同大小的派。有F个朋友会来参加我的派对,每个人会拿到一块派(必须一个派的一块,不能由几个派的小块拼成;可以是一整个派)。
我的朋友们都特别小气,如果有人拿到更大的一块,就会开始抱怨。因此所有人拿到的派是同样大小的(但不需要是同样形状的),虽然这样有些派会被浪费,但总比搞砸整个派对好。当然,我也要给自己留一块,而这一块也要和其他人的同样大小。
请问我们每个人拿到的派最大是多少?每个派都是一个高为1,半径不等的圆柱体。
输入
第一行包含两个正整数N和F,1 ≤ N, F ≤ 10 000,表示派的数量和朋友的数量。
第二行包含N个1到10000之间的整数,表示每个派的半径。
输出
输出每个人能得到的最大的派的体积,精确到小数点后三位。
样例输入
3 3
4 3 3
样例输出
25.133
问题分析:
从0到最大体积,这样就确定下二分的区间,然后不断的缩小区间,找到最合适的体积。
Code:
#include<iostream>
#include<vector>
#include<algorithm>
#include<numeric>
using namespace std;
double Pi=acos(-1.0);//用它表示圆周率
int N,F;
vector<double>R;
bool check(double mid){
int ans=0;
for(int i=0;i<N;i++){
ans=ans+(R[i]/mid);//计算一个派可以分出多少个mid大小的派
if(ans>=F+1)//分的派的数量大于人数
return true;
}
return false;//按照mid大小的派划分不够分的
}
int main(){
cin>>N>>F;
R.resize(N);
for(int i=0;i<N;i++){
int r;
cin>>r;
R[i]=r*r*Pi;//把体积存储起来
}
double sr=*max_element(R.begin(),R.end());
double low=0,high=sr;//确定区间 从0到最大的派作为区间
while(low+0.00001<high){
double mid=(low+high)/2;
if(check(mid))
low=mid;
else
high=mid;
}
printf("%.3f",low);
return 0;
}