1. 跳台阶
我们可以用2 * 1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2 * 1的小矩形无重叠地覆盖一个2 * n的大矩形,总共有多少种方法?
题目分析
我们从简单的开始看。
如上图1,可以先放两个叠着的,再放一个竖着的,
或者
可以先放1个竖着的,再放两个叠着的
后面的排列其实都随意,我们每次操作都可以选择是放两个叠着的,或者放一个竖着的,这个题目其实和爬楼梯的题目答案一样,因此我们直接使用跑楼梯的代码即可。
n 结果数 f(n) 0 0 1 1 2 2 3 3 4 5 n f(n-1) + f(n-2)
下面是代码实现,当n<=2时,返回定义好的数组,当大于2时,开始进行循环计算。相比于递归算法,时间复杂度要小,因为每次计算的结果都保存了下来。
# -*- coding:utf-8 -*-
# python2.7
class Solution:
def rectCover(self, n):
# write code here
re = [0,1,2]
if n<=2:
return re[n]
else:
for i in range(3,n+1):
re.append(re[i-1] + re[i-2])
return re[n]