中文分词基本算法主要分类:基于词典的方法、基于统计的方法、基于规则的方法
1、基于词典的方法(字符串匹配,机械分词方法)
定义:按照一定策略将待分析的汉字串与一个“大机器词典”中的词条进行匹配,若在词典中找到某个字符串,则匹配成功。
按照扫描方向的不同:正向匹配和逆向匹配
按照长度的不同:最大匹配和最小匹配
1.2基于统计的分词(无字典分词)
主要思想:上下文中,相邻的字同时出现的次数越多,就越可能构成一个词。因此字与字相邻出现的概率或频率能较好的反映词的可信度。
主要统计模型为:N元文法模型(N-gram)、隐马尔科夫模型(Hidden Markov Model, HMM)。
最大正向匹配算法:从左向右扫描寻找词的最大匹配。首先我们规定一个词的最大长度,每次扫描的时候寻找当前开始的这个长度的词来和字典中的词匹配,如果没有找到,就缩短长度继续寻找,直到找到或者成为单字。
一个简单的Java正向匹配算法示例
import java.util.*;
import java.io.*;
public class MM {
static int MaxLen=5;
public static void main(String[] args){
String dic="计算语言学、课程、课时";
String str="计算语言学课程是三个课时";
String s="";
int begin=0,end;
while(begin<str.length()){
end=begin+MaxLen;
if(end>str.length())end=str.length();
while(begin<end&&!dic.contains(str.substring(begin,end))){
end--;
}
if(begin==end)end++;
s=s+str.substring(begin,end)+"/";
System.out.println(s);
begin=end;
}
System.out.println(s);} }
正向最大匹配算法和反向最大匹配算法Java实现代码
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.HashSet;
import java.util.Set;
import java.util.logging.Level;
import java.util.logging.Logger;
/**
*
* @author Angela
*/
public class BiMaxSegment {
/**最大分词长度**/
private int max_len;
/**词典**/
private Set<String> dict;
/****
* 初始化max_len和词典
* @param max_len
*/
public BiMaxSegment(int max_len){
this.max_len=max_len;
dict=initDict("dic/chineseDic.txt","gb2312");
}
/**
* 读取词典
* @param dictPath 词典文件路径
* @param charset 词典文件编码
* @return 词典Set
*/
private Set<String> initDict(String dictPath,String charset){
Set<String> dict=