ABC181——F - Silver Woods

现在时间太少了,只能把自己不会的题补一下,会的题就不写了

F - Silver Woods

显然可以二分圆的半径,那么现在问题转化成判断半径为 r r r的圆是否能够满足题意。

考虑什么情况下该半径的圆不能通过这些点。尝试用并查集维护一些关系

如果两个点之间的距离 < 2 r <2r <2r那么说明该圆不能从两者之间通过,那么我们在他们两点之间连一条边。
最后维护完并查集不难发现该圆不能完全通过连通块内的点。
如果该题只能从两点之间通过,那么想要满足题意上述连通块的个数必须 = n =n =n

不过该题可以让边界和点之间通过,那么尝试加入两个“点”,考虑每个点与上下边界的关系,如果距离小于 2 r 2r 2r 一样不能通过,那么我们在他们之间连边。

最后如果加入的两个“点”如果不在一个连通块内,那么说明一定有路径满足题意,如果在一个连通块内,说明不存在路径。

#define IO ios::sync_with_stdio(false);cin.tie();cout.tie(0)
#pragma GCC optimize(2)
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<random>
#include<bitset>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<unordered_map>
#include<unordered_set>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
const int N=110;
int n;
pii a[N];
double dist(int u,int v)
{
    int dx=a[u].first-a[v].first;
    int dy=a[u].second-a[v].second;
    return sqrt(double(dx*dx+dy*dy));
}
int p[N];
int find(int x) {return x==p[x]?x:p[x]=find(p[x]);}
bool check(double r)
{
    int s=0,t=n+1;
    for(int i=s;i<=t;i++) p[i]=i;
    for(int i=1;i<=n;i++)
    {
        if(100-a[i].second<2*r) p[find(i)]=find(s);
        if(a[i].second+100<2*r) p[find(i)]=find(t);
    }
    for(int i=1;i<=n;i++)
        for(int j=i+1;j<=n;j++)
            if(dist(i,j)<2.0*r)
                p[find(i)]=find(j);
    return find(s)==find(t);
}
int main()
{
    IO;
    int T=1;
    //cin>>T;
    while(T--)
    {
        cin>>n;
        for(int i=1;i<=n;i++) cin>>a[i].first>>a[i].second;
        double l=0,r=100.0;
        while(r-l>1e-6)
        {
            double mid=(l+r)/2;
            if(check(mid)) r=mid;
            else l=mid;
        }
        printf("%.6lf",l);
    }
    return 0;
}

天天就会打模板?学那么多数据结构有什么用,可能还是见的题太少了,要加油哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值