P6240 好吃的题目(分治+背包)

22 篇文章 0 订阅

P6240 好吃的题目

类似于线段树分治,在每个节点预处理 [ l , m i d ] , [ m i d + 1 , r ] [l,mid],[mid+1,r] [l,mid],[mid+1,r]的背包,然后询问即可

一般代码就类似下面的写法,但是此题有点卡空间于是稍微优化了一下空间。
时间复杂度 O { n log ⁡ n max ⁡ ( h i , t i ) } O\{n\log n\max(h_i,t_i)\} O{nlognmax(hi,ti)}

#include<bits/stdc++.h>
using namespace std;
using ll=long long;
constexpr int N=40010;
int n,m,q;
int v[N],w[N];
ll fl[N][205],fr[N][205];
int b[200010];
ll ans[200010];
struct node
{
    int l,r,t,id;
};
void solve(int l,int r,vector<node> &vec)
{
    if(l==r) 
    {
        for(node a:vec)
            ans[a.id]=(v[l]<=a.t?w[l]:0);
        return;
    }
    vector<node> vl,vr;
    int mid=l+r>>1,idx=0;
    
    for(int i=0;i<vec.size();i++)
    {
        if(vec[i].r<=mid) 
            vl.push_back(vec[i]);
        else if(vec[i].l>mid)
            vr.push_back(vec[i]);
        else b[++idx]=i;
    }
    for(int i=l;i<=r;i++) 
        for(int j=0;j<=m;j++)
            fl[i][j]=fr[i][j]=-1;
    for(int j=0;j<=m;j++)
        fl[mid+1][j]=fr[mid][j]=0;
    
    for(int i=mid;i>=l;i--)
        for(int j=0;j<=m;j++)
        {
            fl[i][j]=fl[i+1][j];
            if(j>=v[i]) fl[i][j]=max(fl[i][j],fl[i+1][j-v[i]]+w[i]);
        }
    for(int i=mid+1;i<=r;i++)
        for(int j=0;j<=m;j++)
        {
            fr[i][j]=fr[i-1][j];
            if(j>=v[i]) fr[i][j]=max(fr[i][j],fr[i-1][j-v[i]]+w[i]);
        }
    for(int i=1;i<=idx;i++)
    {
        int l=vec[b[i]].l,r=vec[b[i]].r,t=vec[b[i]].t;
        ll res=-1;
        for(int j=0;j<=t;j++) res=max(res,fl[l][j]+fr[r][t-j]);
        ans[vec[b[i]].id]=res;
    }

    if(vl.size()) solve(l,mid,vl);
    if(vr.size()) solve(mid+1,r,vr);
}
int main()
{
    ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
    cin>>n>>q;
    for(int i=1;i<=n;i++) cin>>v[i];
    for(int i=1;i<=n;i++) cin>>w[i];
    vector<node> vec;
    for(int i=1;i<=q;i++)
    {
        int l,r,t;
        cin>>l>>r>>t;m=max(m,t);
        vec.push_back((node){l,r,t,i});
    }
    solve(1,n,vec);
    for(int i=1;i<=q;i++) cout<<ans[i]<<'\n';
    return 0;
}

优化空间后代码

#include<bits/stdc++.h>
using namespace std;
using ll=long long;
constexpr int N=40010;
int n,m,q;
int v[N],w[N];
ll f[N][205];
int b[200010];
ll ans[200010];
struct node
{
    int l,r,t,id;
};
void solve(int l,int r,vector<node> &vec)
{
    if(l==r) 
    {
        for(node a:vec)
            ans[a.id]=(v[l]<=a.t?w[l]:0);
        return;
    }
    vector<node> vl,vr;
    int mid=l+r>>1,idx=0;
    
    for(int i=0;i<vec.size();i++)
    {
        if(vec[i].r<=mid) 
            vl.push_back(vec[i]);
        else if(vec[i].l>mid)
            vr.push_back(vec[i]);
        else b[++idx]=i;
    }
    
    for(int i=l;i<=r;i++)
    {
        for(int j=0;j<=m;j++) f[i][j]=-1;
        if(i==mid||i==mid+1) 
            for(int j=0;j<=m;j++) f[i][j]=(j>=v[i]?w[i]:0);
    }
    for(int i=mid-1;i>=l;i--)
        for(int j=0;j<=m;j++)
        {
            f[i][j]=f[i+1][j];
            if(j>=v[i]) f[i][j]=max(f[i][j],f[i+1][j-v[i]]+w[i]);
        }
    for(int i=mid+2;i<=r;i++)
        for(int j=0;j<=m;j++)
        {
            f[i][j]=f[i-1][j];
            if(j>=v[i]) f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);
        }
    for(int i=1;i<=idx;i++)
    {
        int l=vec[b[i]].l,r=vec[b[i]].r,t=vec[b[i]].t;
        ll res=-1;
        for(int j=0;j<=t;j++) res=max(res,f[l][j]+f[r][t-j]);
        ans[vec[b[i]].id]=res;
    }

    if(vl.size()) solve(l,mid,vl);
    if(vr.size()) solve(mid+1,r,vr);
}
int main()
{
    ios::sync_with_stdio(false);cin.tie(nullptr);cout.tie(nullptr);
    cin>>n>>q;
    for(int i=1;i<=n;i++) cin>>v[i];
    for(int i=1;i<=n;i++) cin>>w[i];
    vector<node> vec;
    for(int i=1;i<=q;i++)
    {
        int l,r,t;
        cin>>l>>r>>t;m=max(m,t);
        vec.push_back((node){l,r,t,i});
    }
    solve(1,n,vec);
    for(int i=1;i<=q;i++) cout<<ans[i]<<'\n';
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值