CCF 20200601线性分类器

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

题目分析:

因为直线上的点代入直线解析式肯定为0,那么在一条直线的两侧的点 代入直线解析式中,要么>0,要么<0
通过判断A集合是否在同一侧,B集合是否在同一侧就可以。
在输入n个点信息的同时,就直接将A类点放入数组a中,B类点放入数组b中,acnt和bcnt就是在记录A类数组和B类数组的个数
设置一个标记布尔值 sign,之后判断A类点是不是在同一侧,B类点是不是在同一侧就好

#include <iostream>
using namespace std;
const int N = 1000;
struct Point {
    int x, y;
} a[N], b[N];

int acnt, bcnt;

int main()
{
    int n, m;
    cin >> n >> m;
    acnt = bcnt = 0;
    for (int i = 0; i < n; i++) {
        int x, y;
        char type2[2];
        cin >> x >> y >> type2;
        if (type2[0] == 'A') 
        {
            a[acnt].x = x;
            a[acnt].y = y;
            acnt++;
        }
        else if (type2[0] == 'B') 
        {
            b[bcnt].x = x;
            b[bcnt].y = y;
            bcnt++;
        }
    }
    for (int i = 1; i <= m; i++) 
    {
        bool side, ans = true;
        int t0, t1, t2;
        cin >> t0 >> t1 >> t2;
        if (acnt)
            side = t0 + a[0].x * t1 + a[0].y * t2 > 0;
        else
            side = t0 + b[0].x * t1 + b[0].y * t2 > 0;

        // 判定A点集合是否在同一侧
        for (int i = 0; i < acnt; i++)
            if (t0 + a[i].x * t1 + a[i].y * t2 > 0 != side) 
            {
                ans = false;
                break;
            }

        // 判定B点集合是否在同一侧
            for (int i = 0; i < bcnt; i++)
                if (t0 + b[i].x * t1 + b[i].y * t2 > 0 == side) 
                {
                    ans = false;
                    break;
                }
        printf(ans ? "Yes\n" : "No\n");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值