一、确定选题
我们小组五个同学就选题进行了一段时间的讨论,最后确定选择做一个基于DeepSeek面向中小学生的智能题目生成系统,旨在为学生提供全方位的学习支持。
二、项目背景
当前教育领域正面临数字化转型的关键时期,而小学阶段作为基础教育的重要环节,其教学质量和效率的提升尤为迫切。本项目旨在通过整合先进的AI技术,解决传统小学教育中存在的若干痛点问题,为师生提供智能化、个性化的学习支持工具。
教育行业现状与挑战
- 教学资源不均衡:
- 城乡、区域间教育资源分配不均,优秀教师和优质习题资源集中在少数重点学校,普通学校教师备课压力大,难以针对学生个体差异提供个性化辅导。
- 传统习题模式的局限性:
- 纸质习题册更新周期长,难以动态适配教学进度
- 统一化的题目难以满足不同学生的学习需求
- 教师手工出题耗时费力,且难以系统性地覆盖所有知识点
- 课后辅导困境
- 家长辅导能力参差不齐,校外辅导机构质量良莠不齐且成本高昂,疫情期间暴露的在线教育技术短板仍需补足。
技术发展机遇
- 大语言模型突破
- DeepSeek等国产大模型在中文理解、数学推理和多轮对话方面已达到实用水平,其知识覆盖广度足以支撑小学全学科需求。
- 教育信息化政策支持
- 国家《教育信息化2.0行动计划》明确要求推动AI与教育教学深度融合,2023年《生成式人工智能服务管理暂行办法》为AI教育应用提供了规范框架。
- 硬件基础设施完善
- 全国中小学网络接入率达100%,智能终端普及率超过90%,为智能化教学工具推广奠定基础。
三、需求分析
核心功能需求
- 智能题目生成模块
- 多学科覆盖:支持语文、数学、英语、科学等小学主要学科
- 题型多样化:选择题、填空题、判断题、应用题、阅读理解等
- 难度分级:根据需求调整题目难度
- 知识点关联:与教材章节知识点精准对应
- 生成参数控制:允许设置题目数量、难度系数、知识点范围等
- 个性化学习支持
- 学生能力评估:通过答题情况分析学生知识掌握程度
- 自适应学习路径:根据评估结果推荐适合的练习题目
- 错题强化:自动收集错题并生成相似题目强化训练
- 学习进度跟踪:可视化展示学生的学习进步情况
- 交互式问答功能
- 自然语言问答:学生可以用自然语言提问学科相关问题
- 分步解答:对复杂问题提供分步骤的详细解答过程
- 举一反三:在解答后自动生成类似题目巩固学习
非功能性需求
- 性能需求
- 响应时间:题目生成响应时间不超过3秒
- 并发处理:支持1000+用户同时在线使用
系统可用性:99.9%的正常运行时间
- 安全与隐私
- 数据加密:所有学生数据加密存储和传输
- 隐私保护:符合儿童在线隐私保护法规要求
- 内容过滤:自动过滤不适当的内容和语言
- 用户体验
- 界面友好:采用适合小学生的色彩和交互设计
- 操作简单:低年级学生也能独立使用核心功能
技术架构需求
- 模型集成
- DeepSeek API集成:作为核心的题目生成和问答引擎
- 本地模型微调:针对教育场景进行领域适配微调
- 混合模型策略:结合规则引擎提高特定题型的准确性
- 数据管理
- 教材知识图谱:构建覆盖小学各学科的知识体系
- 题目数据库:存储系统生成的题目及关联元数据
- 学习行为数据:记录学生的交互和答题情况
- 系统扩展性
- 模块化设计:便于新增学科或功能模块
- API开放:支持与现有教育平台集成