- 博客(12)
- 收藏
- 关注
原创 面向小学生的智能题目生成系统开发(四)
在上一次的开发中已经完成了图片预处理,单图、多图和pdf识别,在探索更多文件格式识别后,发现Tessertact OCR的能力确实有限,在进行很多处理时需要引入很多其他的库,增加了应用的负担,并且依赖与依赖间不好管理,所以我们决定采用百度的解决方案。接下来写一个新的Service类来做调用,按照文档,图片需要转成base64编码进行传输,并且将字符串中的分别转换为为%2F,%3D,%2B,以符合百度的要求,所以要在工具类中写一个处理base64编码的函数。,注册登录后打开用户中心。
2025-05-06 22:53:38
920
原创 基于deepseek的小学生智能题目生成问答系统(四)
系统的一大功能便是用户可自由上传多种形式的文件,由系统来负责提取信息。图片则是其中重要的部分,拥有完整的、正式的电子档教材的毕竟是少数。对图片的文本提取呢,很自然的就想到OCR技术,在网上查阅资料后,对比了几款易于获取的解决方案。之后需要下载官网的训练数据,Tesseract OCR库通过训练数据来学习不同语言和字体的特征,以便更好地识别图片中的特定语言的文字。我们的目标是完成对单图和多图都能正常识别,多图采用压缩包的形式;为了避免每次调用前都要设置Tessertact的参数,所以创建一个配置类。
2025-04-30 14:36:36
702
原创 基于deepseek的小学生智能题目生成问答系统(二)
基于DeepSeek的小学生智能题目生成问答系统旨在利用先进的大语言模型技术,为小学生提供个性化、智能化的学习辅助工具。该系统能够根据学生的学习水平、知识掌握情况和兴趣爱好,自动生成适合的练习题、测试题和知识点问答,帮助教师减轻备课负担,同时为学生提供更有针对性的学习支持。
2025-04-26 17:22:59
640
原创 基于deepseek的小学生智能题目生成问答系统(一)
我们小组五个同学就选题进行了一段时间的讨论,最后确定选择做一个基于DeepSeek面向中小学生的智能题目生成系统,旨在为学生提供全方位的学习支持。
2025-04-25 18:52:48
670
原创 面向小学生的智能题目生成系统开发(三)
思路是,在前端用户上传多张图片时,为了保证传输效率和节省网络带宽,自动压缩为zip、rar文件,也为用户增加了一种文件类型的支持。至此,对pdf的识别可以实现,先分割每页转为图片,再经过图片预处理,之后若尺寸过大则采用分块识别,最后根据页面顺序拼接结果。接下来,新的问题是,若pdf或图片尺寸过大,难以一次整体识别,则我们要对其进行分块识别。思路很简单,上次我们实现了图片,那么对于pdf的处理,就是先转成图片,再进行图片识别。2.杂项过滤,许多pdf中包含很丑陋的水印,有可能会污染识别结果。
2025-04-24 13:02:05
187
原创 面向小学生的智能题目生成系统开发(二)
首先是经典的依赖注入,声明了一个不可变的Tesseract实例变量,由于Tesseract的实体类在引入的包中已经封装好了,这样的话我们就实现了控制反转(IoC),将Tesseract的创建和管理交给Spring容器。对图片的文本提取呢,很自然的就想到OCR技术,在网上查阅资料后,对比了几款易于获取的解决方案。之后需要下载官网的训练数据,Tesseract OCR库通过训练数据来学习不同语言和字体的特征,以便更好地识别图片中的特定语言的文字。在form-data设置好参数名和参数类型,找好测试用的图片。
2025-04-03 18:59:03
865
原创 面向小学生的智能题目生成系统开发(一)
用户注册登录后,即可上传教材,支持图片、word、pdf等形式,设定难度和题目数量后,上传系统处理,系统调用deepseek api生成所需题目以及对应答案和解析。虽说市面上的辅导软件和学习资料五花八门,但普遍缺乏关联性且绝大多数是付费功能,免费快捷的资源却又经常没了下文,无法找到对应的答案以及解析,这对信息检索能力不高的小学生和家长群体来说,难以提高学习效率。做到对一道题、一个解析或者最后的总结,用户全程可反馈,保证用户的使用感受,确保每个用户的知识库独一无二。二、基础技术栈的选择。
2025-03-29 19:43:28
647
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人