我们知道,大数据的计算模式主要分为批量计算(batch computing)、流式计算(stream computing)、交互计算(interactive computing)、图计算(graph computing)等。其中,流式计算和批量计算是两种主要的大数据计算模式,分别适用于不同的大数据应用场景。
目前主流的流式计算框架有Storm、Spark Streaming、Flink三种,其基本原理如下:
Apache Storm
在Storm中,需要先设计一个实时计算结构,我们称之为拓扑(topology)。之后,这个拓扑结构会被提交给集群,其中主节点(master node)负责给工作节点(worker node)分配代码,工作节点负责执行代码。在一个拓扑结构中,包含spout和bolt两种角色。数据在spouts之间传递,这些spouts将数据流以tuple元组的形式发送;而bolt则负责转换数据流。
Apache Spark
Spark Streaming,即核心Spark API的扩展,不像Storm那样一次处理一个数据流。相反,它在处理数据流之前,会按照时间间隔对数据流进行分段切分。Spark针对连续数据流的抽象,我们称为DStream(Discretized Stream)。 DStream是小批处理的RDD(弹性分布式数据集), RDD则是分布式