直播回顾 | 图推荐算法在E&E问题上的应用

导读:本次分享将围绕以图为基础衍生的一类推荐算法原理和应用,以及 E&E 问题 ( 如何应对新用户和新内容 ) 的一些处理方法。E&E 指探索与利用,是推荐系统当中的两个核心问题。

主要内容包括:

  • Background

  • Related Work

  • Our Work

01

Background

1. 推荐系统在 E&E 上的两大难点

在建立推荐系统的模型之前,我们需要获得用户和内容的相关数据。可是在推荐系统的实践中,经常会遇到冷启动的问题,即缺少新进入的用户信息和新进入的内容信息。对于用户信息,很多公司都会有市场部从市场上的各个渠道导入进来,成本较高,且无法完全覆盖。对于新进入的用户,他们往往是没有历史行为的,而这个行为特征却是推荐系统中最重要的特征之一。而新用户的留存对于公司是至关重要的,所以对于新用户的推荐要求尽可能的精准,使其对于平台产生忠诚度。新用户的推荐是推荐系统的第一个难题。第二个难点则是新内容的推荐,新内容首先是没有用户的反馈,没有用户的反馈也就无法利用相应的评估体系总结内容的真实价值。同时,新内容还存在难曝光的问题。现存的推荐系统,从比较传统的推荐系统,到 Word2Vec,再到现在各种各样的神经网络,在召回阶段都无法很好的召回新内容, 所以很难进入到训练样本中去,这是新内容的长尾问题。

2. 经典图模型—协同过滤

我们可以把协同过滤认为是一种图推荐模型, 因为用户和内容可以认为是二分图结构。推荐系统的宗旨是建立更多的用户到内容的链接,随着图越来越大,就可以抽取到更多的信息, 从而服务更多的用户。以 item-based CF 为例,通过计算 item 之间的相似度,从而计算出最相似的 topK 内容,把它们当作当前 item 的邻接点,构成物与物相连的有向图保存在起来。推荐时快速定位用户接触过的 seeds 列表:在"一推多"场景直接查找节点的邻边。 在 "n 推 n" 场景根据多节点对各邻边加权求和。在多样性推荐中将 seeds 分组并执行多个"一推多"操作。

CF 的缺点也很明显,首先,由于算法的设计问题,导致了它是一种偏热门推荐。在数据过滤的初期,没有达到某种阈值的 user 和 item 将会被过滤掉,形成马太效应。第二,容易形成内部环路。比如某些很受欢迎的主播,他们互为 topK,导致一直在他们内部互推。

这时,我们可以通过知识图谱和 node2vec 来拓展图的泛化能力。

3. Graph Embedding

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值