有n级台阶。从地面(第0级)出发,首先连续的上台阶,上到不超过第n级的某一个位置后再连续的下台阶,直到回到地面。若每次上下台阶只允许走1级或2级,请问可能的上下台阶的方案数是多少?
特别地,在0级站着不动也算一种方案。
数据格式:
输入一行包含两个正整数n和m。
输出一个整数,表示n级台阶有多少种合法的走楼梯方案,答案对m取余。
例如:输入:
2 10007
程序应该输出
6
【样例说明1】
共有6种方案(其中+表示上台阶,-表示下台阶):
(1) 原地不动
(2) +1 -1
(3) +2 -2
(4) +2 -1 -1
(5) +1 +1 -2
(6) +1 +1 -1 -1
再例如,输入:
3 14
程序应该输出:
1
【样例说明2】
共有15种方案,对14取余后得1。
【数据规模】
对于30%的数据,n<=10000;
对于100%的数据,n<=10^17,m<=2*10^9。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
特别地,在0级站着不动也算一种方案。
数据格式:
输入一行包含两个正整数n和m。
输出一个整数,表示n级台阶有多少种合法的走楼梯方案,答案对m取余。
例如:输入:
2 10007
程序应该输出
6
【样例说明1】
共有6种方案(其中+表示上台阶,-表示下台阶):
(1) 原地不动
(2) +1 -1
(3) +2 -2
(4) +2 -1 -1
(5) +1 +1 -2
(6) +1 +1 -1 -1
再例如,输入:
3 14
程序应该输出:
1
【样例说明2】
共有15种方案,对14取余后得1。
【数据规模】
对于30%的数据,n<=10000;
对于100%的数据,n<=10^17,m<=2*10^9。
资源约定:
峰值内存消耗(含虚拟机) < 256M
CPU消耗 < 1000ms
请严格按要求输出,不要画蛇添足地打印类似:“请您输入...” 的多余内容。
解题思路:
设f(n)是fibonacii数列{1,1,2,3,5....}的第n项
则总台阶数F(n)=f(1)^2+f(2)^2+f(3)^2+...+f(n+1)^2
* f(n)^2 = f(n)(f(n+1)-f(n-1))=f(n)f(n+1)-f(n)f(n-1)
* f(n-1)^2 = f(n)f(n-1)-f(n-1)f(n-2)
* 因此F(n)合并后得
* F(n)=f(n+2)f(n+1)
由于数据量过大, 求f(n) 可以使用矩阵快速幂的方式求解
import java.math.BigInteger;
import java.util.Scanner;
public class Main2
{
public static int mod;
public static void main(String[] args)
{
Scanner sc = new Scanner(System.in);
BigInteger n = sc.nextBigInteger();
mod = sc.nextInt();
BigInteger[][] f = {{BigInteger.ONE,BigInteger.ONE},{BigInteger.ONE,BigInteger.ZERO}};
BigInteger res1[][] = pow1(f, n.add(BigInteger.ONE));
BigInteger res2[][] = pow1(f, n.add(new BigInteger("2")));
System.out.println(res1[0][1].multiply(res2[0][1]).mod(new BigInteger(mod+"")) );
}
private static BigInteger[][] pow1(BigInteger[][] f, BigInteger n)
{
n = n.subtract(BigInteger.ONE);
BigInteger[][] temp = new BigInteger[2][2];
temp[0][0] = f[0][0];
temp[0][1] = f[0][1];
temp[1][0] = f[1][0];
temp[1][1] = f[1][1];
while(n.compareTo(BigInteger.ZERO) == 1)
{
if (n.mod(new BigInteger("2")).compareTo(BigInteger.ONE)==0)
temp = mul1(temp, f);
n = n.divide(new BigInteger("2"));
f = mul1(f, f);
}
return temp;
}
private static BigInteger[][] mul1(BigInteger[][]f1, BigInteger[][]f2)
{
BigInteger[][]f3 = new BigInteger[2][2];
f3[0][0] = f1[0][0].multiply(f2[0][0]).add(f1[0][1].multiply(f2[1][0])).mod(new BigInteger(mod+""));
f3[0][1] = f1[0][0].multiply(f2[0][1]).add(f1[0][1].multiply(f2[1][1])).mod(new BigInteger(mod+""));
f3[1][0] = f1[1][0].multiply(f2[0][0]).add(f1[1][1].multiply(f2[1][0])).mod(new BigInteger(mod+""));
f3[1][1] = f1[1][0].multiply(f2[0][1]).add(f1[1][1].multiply(f2[1][1])).mod(new BigInteger(mod+""));
return f3;
}
}