D. Circular Dance
题目链接-D. Circular Dance
题目大意
现在有一个长度为n的排列,已知每一个数后面的两个数(顺序未知),还原这个排列
解题思路
d
f
s
dfs
dfs
- 因为我们不知道一个数后面两个数的顺序,所以我们可以用
vector
建两个无向边,即把每个点后面两个点之间连一条无向边,并用结构体记录一下该点后面两个点 - 我们可以从 1 1 1开始dfs,记得dfs还原环的时候一定要选对方向,因为第一个人连着两个人,一个是他前面的人,一个是他后面的人,首先搜索的肯定是他后面的那个人,所以我们要保证从 1 1 1往后走
- 记得用
vis[]
数组标记一下已经还原过的点,当搜索x后面点时,遍历v[x]
,因为v[x]
存的是x所建的无向边,所以我们还需判断与x建边的点是否是x后面两个点中的一个,即判断是否s[x].a==v[x][i]||s[x].b==v[x][i]
- 具体操作见代码
附上代码
#pragma GCC optimize("-Ofast","-funroll-all-loops")
#include<bits/stdc++.h>
#define int long long
#define lowbit(x) (x &(-x))
#define endl '\n'
using namespace std;
const int INF=0x3f3f3f3f;
const int dir[4][2]={-1,0,1,0,0,-1,0,1};
const double PI=acos(-1.0);
const double e=exp(1.0);
const double eps=1e-10;
const int M=1e9+7;
const int N=2e5+10;
typedef long long ll;
typedef pair<int,int> PII;
typedef unsigned long long ull;
int n,vis[N];
struct node{
int a,b;
}s[N];
vector<int> v[N];
void dfs(int x){
vis[x]=1;
cout<<x<<" ";
for(int i=0;i<v[x].size();i++){
int t=v[x][i];
if(!vis[t]&&(s[x].a==t||s[x].b==t))
dfs(t);
}
}
signed main(){
ios::sync_with_stdio(false);
cin.tie(0);cout.tie(0);
cin>>n;
for(int i=1;i<=n;i++){
cin>>s[i].a>>s[i].b;
v[s[i].a].push_back(s[i].b);
v[s[i].b].push_back(s[i].a);
}
dfs(1);
cout<<endl;
return 0;
}