2019 JUST Programming Contest C. Large GCD

C. Large GCD

题目链接-C. Large GCD
在这里插入图片描述
在这里插入图片描述
题目大意
给你两个互质的数 n , m n,m nm,且 F ( n , m ) = g c d ( 5 n + 7 n , 5 m + 7 m ) F(n,m)=gcd(5n+7n,5m+7m) F(n,m)=gcd(5n+7n,5m+7m),请你求出 F ( n , m ) F(n,m) F(n,m)的值

解题思路
找 规 律 找规律
通过打表不难发现当 n , m n,m n,m都为奇数时, F ( n , m ) F(n,m) F(n,m)的值为12,否则 F ( n , m ) F(n,m) F(n,m)的值为2

附上代码

#pragma GCC optimize("-Ofast","-funroll-all-loops")
#include<bits/stdc++.h>
#define int long long
#define lowbit(x) (x &(-x))
#define endl '\n'
using namespace std;
const int INF=0x3f3f3f3f;
const int dir[4][2]={-1,0,1,0,0,-1,0,1};
const double PI=acos(-1.0);
const double e=exp(1.0);
const double eps=1e-10;
const int M=1e9+7;
const int N=2e5+10;
typedef long long ll;
typedef pair<int,int> PII;
typedef unsigned long long ull;
signed main(){
	ios::sync_with_stdio(false);
	cin.tie(0);cout.tie(0);

	int t;
	cin>>t;
	while(t--){
		int n,m;
		cin>>n>>m;
		if((n&1)&&(m&1))//也可写成if((n+m)%2==0)
			cout<<12<<endl;
		else
			cout<<2<<endl; 
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值