最大公约数

求两个正整数的最大公约数

方法一:

辗转相除法

假设两个正整数x,y ,令x/y=p  ,x%y=q 即 x=p* y +q     则 如果一个数能整除x,y 则一定能够整出y 和q    如果一个数能够整除y和q 则一定能够整除x,y ,所以x,y和y ,q具有相同的公约数

gcd(x,y)=gcd(y,x%y)....

比如 x=18 y=12

gcd(18,12)=gcd(12,6)=gcd(6,0) 因此最大公约数为非0的数 6

显然可以用递归的方法实现:

int gcd(int x,int y)
{
	if(x==0)
		return y;
	if(y==0)
		return x;
	return gcd(y,x%y);
}

方法二:

类似辗转相除法  如果一个数能整除x,y 则一定能够整出y 和x-y    如果一个数能够整除y和x-y  则一定能够整除x,y ,所以x,y和y ,x-y具有相同的公约数

用递归实现:

int gcd1(int x,int y)
{
	if(x<y)
		return gcd1(y,x);
	if(y==0)
		return x;
	else
		return gcd1(x-y,y);
}


方法三:

对于很大的数求最大公约数 方法一不适合 而对于方法二 将取余转换为减法 但是迭代次数太多 因此都不适合求大数的公约数


对于x ,y ,如果y=k* y1 x= k*x1 则gcd(x,y)= k*gcd(x1,y1)

                  如果x=p *x1 假设p为素数 且 y%p!=0 则 gcd(x,y)=gcd(p*x1,y)=gcd(x1,y)


  我们可以利用上述两条性质对算法进行改进,对于最简单的素数2  我们很容易对一个数 将乘以2和除以2转换为移位运算 

令p=2

若x,y均为偶数 则gcd(x,y)=2*gcd(x/2,y/2)=2*gcd(x>>1,y>>1)

若x为偶数y为奇数 f(x,y)=gcd(x/2.y)=gcd(x>>1,y)

若x为奇数 y为偶数 f(x,y)=gcd(x,y/2)=gcd(x,y>>1)

若x,y同为奇数 f(x,y)=gcd(x-y,y) 

那么在gcd(x,y)=gcd(x,x-y)后 x-y肯定为偶数 下一步一定会有除以2的操作

最坏情况下时间复杂度为O(log(max(x,y))


int gcd2(int x,int y)
{
	if(x<y)
		return gcd2(x,y);
	if(y==0)
		return 0;
	else
	{
		if(x%2==0)
		{
			if(y%2==0)
				return gcd2(x>>1,y>>1);
			else
				return gcd2(x>>1,y);
		}
		else
		{
			if(y%2==0)
				return gcd2(x,y>>1);
			else
				return gcd(y,x-y);
		}
	}
}








  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值