torch.triu 与 numpy.triu 函数

本文详细介绍了numpy和PyTorch中的`triu`函数,用于创建上三角矩阵。通过示例展示了如何设置参数k来选择不同的对角线,从而得到不同的上三角部分,并提供了等效的Python和PyTorch代码示例进行对比。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

triu = triangle up (我猜的)

顾名思义,这个函数的作用相同,都是返回上三角矩阵,定义分别如下:

numpy.triu(m, k)
torch.triu(Tensor, diagonal)

这两个函数的对应参数都是相同的含义。m 代表要操作的矩阵,k 代表以哪条对角线作为上三角矩阵的对角线。k=0 代表主对角线,k 为正数则从主对角线开始向上数第 k 条,k 为负数则从主对角线开始向下数第 k 条。举例如下:

import torch
import numpy as np

# triangle up
matrix = np.ones((4, 4))
# 使用主对角线作为上三角矩阵的对角线
tri_matrix = np.triu(matrix, k=0)
print(tri_matrix)
# 输出:
[[1. 1. 1. 1.]
 [0. 1. 1. 1.]
 [0. 0. 1. 1.]
 [0. 0. 0. 1.]]

# 使用主对角线上面第二条对角线
tri_matrix = np.triu(matrix, k=2)
print(tri_matrix)
# 输出:
[[0. 0. 1. 1.]
 [0. 0. 0. 1.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]

# 使用主对角线下面第一条对角线
tri_matrix = np.triu(matrix, k=-1)
print(tri_matrix)
# 输出:
[[1. 1. 1. 1.]
 [1. 1. 1. 1.]
 [0. 1. 1. 1.]
 [0. 0. 1. 1.]]

# torch 版
T_matrix = torch.from_numpy(matrix)
T_matrix = torch.triu(T_matrix, 1)
print(T_matrix)
# 输出:
tensor([[0., 1., 1., 1.],
        [0., 0., 1., 1.],
        [0., 0., 0., 1.],
        [0., 0., 0., 0.]], dtype=torch.float64)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

地球被支点撬走啦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值