史上最简单的macOS本地部署DeepSeek方法

众所周知,DeepSeek最近火出天际。它推出后迅速登顶了App Store和Google Play排行榜。但是随之而来也有很多问题。大家在使用过程中会发现提问两三个问题后就会频繁收到服务器繁忙,请稍后再试的提示,这个问题非常影响使用,让各地用户都很抓狂。

目前最有用的替代方法是用本地部署然而对于一些新手小白来说,本地部署也是一件繁琐的事情,可能看了很多教程,尝试了很多次,都不一定能成功部署一个大型模型出来。

我想要分享一下工作中使用 AI 冷门野路子,非常简单,即使小白或者没有编程经验也可以马上学会,但请注意此方法目前只适用于macOS系统,Windows 用户就没这个福气了

一个偶然的机会,我发现平时开发使用的ServBay更新了,它的新版本支持了Ollama。而Ollama 是一个专注于在本地运行大型语言模型(LLMs)的工具。它支持DeepSeek-r1,llama,solar,qwen等等知名AI大模型。

所以你们明白我的意思了吗?也就是说,只要安装了ServBay就可以一键启用这些打包好的常用AI大模型,并且响应速度都不差。

本来Ollama需要通过复杂的流程去安装和启动服务的,但是通过ServBay,只需要一键点击就能启动,安装你所需要的AI模型,不用再考虑环境变量配置的问题。就算是对开发一窍不通的普通用户,也可以点一下就能用。一键启动和关闭,多线程快速下载模型,只要你的 macOS 够用,同时跑多个AI大模型也没问题。

在我的电脑上,下载速度甚至超过了每秒 60MB,秒杀各种其他同类工具,有图有真相。

就这样,通过ServBay及Ollama,我就可以在本地部署我的DeepSeek了。看,它运行良好。

瞧!我通过ServBay实现了DeepSeek自由~

对了,最近美国国会已经提出新法案,下载DeepSeek将被定为犯罪,最高判处20年监禁!但是,通过本地部署,离线使用,是不是就可以。。奥,请原谅我脑洞又大开了LOL。。

### 安装和配置Ollama DeepSeekMacOS #### 准备工作 对于希望在 MacOS本地部署 OllamaDeepSeek 的用户来说,准备工作至关重要。确保设备满足最低硬件要求是成功安装的关键因素之一。根据已有的资料[^3],对于1.5b参数量级的DeepSeek模型,在进行FP16推理时大约需要3GB显存;而在INT8模式下则降至约2GB。针对MacOS环境下的RAM需求至少为8GB。 #### 下载并安装Ollama 由于官方文档指出,默认情况下Ollama会安装至C盘位置,而此情况适用于Windows操作系统。考虑到目标平台为MacOS,因此无需特别关注安装路径的选择问题。可以直接访问官方网站获取适合苹果系统的安装包,并按照提示完成软件本身的安装过程[^1]。 #### 获取与加载DeepSeek模型 一旦完成了Ollama的基础设置之后,则可以转向准备所需的AI模型——即DeepSeek。通过Ollama提供的界面或CLI工具来下载对应版本的DeepSeek是非常便捷的方式。具体操作可参照相关指南中的说明部分。 #### 配置开发环境-PyCharm集成 为了更好地利用这些强大的自然语言处理能力,许多开发者倾向于将其融入到自己的项目当中去。此时便涉及到IDE的选择以及相应的插件支持等问题。以PyCharm为例,可以通过特定的方法实现对上述组件的支持,从而方便后续编码工作的开展。更多细节可以在专门的教学文章里找到。 ```bash # 假设已经正确设置了ollama环境变量 ollama install deepseek # 使用ollama CLI 工具安装deepseek模型 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值