自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(820)
  • 收藏
  • 关注

原创 AI大模型(Qwen3)训练实战:从零开始玩转LLaMA-Factory

这一篇来整体讲一下大模型的训练和微调,选用的大模型依然是大模型(Qwen3),训练和微调的框架使用的是LLaMA-Factory。在人工智能技术日新月异的今天,大型语言模型(LLM)已成为科技领域的热门话题。但对于大多数开发者和企业来说,如何高效、低成本地微调这些"庞然大物"仍是一个难题。今天,我将为大家详细介绍如何使用LLaMA-Factory这一开源框架,从环境搭建到模型训练,再到实际应用,手把手教你打造属于自己的AI助手!

2025-05-27 19:18:36 326

原创 10min让你用Dify零代码搭建一个属于你的大模型知识库,零基础小白收藏这一篇就够了!!

这篇文章讲述了RAG的基本原理,通俗易懂,但是存在一个问题——用户可能很难自己搭建一个可用的RAG,它能让大家了解RAG的原理,但是还不够应用层面,如果真的想应用,你需要具备一定的代码能力,你需要具备知识库的清洗切片等,难度相对较大,所以,为了让大家把所学变成应用,“他”来了,一个零代码经验也可以搭建一个可用的大模型知识库,他来了,注意了,是零代码+可用,零代码+可用,零代码+可用…(重要的事情说三遍)

2025-05-27 18:59:19 367

原创 除了稀疏稠密检索,第三层检索来了!推理信息检索让RAG真正理解你在问什么!

最近看到一个很有意思的研究,说的是信息检索的三个层次:Level 1: 关键词检索- 匹配相同的词Level 2: 语义检索- 理解词的含义Level 3: 推理检索- 需要逻辑思考才能找到答案今天就跟大家聊聊这个"推理检索"到底是什么鬼,以及最新的一些进展。

2025-05-26 15:02:48 808

原创 AI也能当情感大师?腾讯发布最新AI社交智能榜单,最新版GPT-4o拿下第一

判断AI是否智能,评价维度如今已不仅限于刷榜成绩。当大模型在“IQ”上不断实现新的突破,“懂人心”、“解人意”开始成为实际应用中,人们对大模型新的要求。所以,AI的“EQ”又该如何评价?

2025-05-26 14:01:45 800

原创 【AI大模型微调】LoRA及其变体:大模型微调技术的最新发展与应用

QLoRA与量化技术结合QLoRA将量化技术与LoRA相结合,通过4比特量化基础模型并使用LoRA进行微调,大幅减少显存需求,使得在消费级GPU上也能微调大型模型。这使得更多开发者和研究者能够参与到模型定制中来。

2025-05-25 08:00:00 696

原创 AI大模型QLoRA:4bit量化+LoRA训练=瞬间起飞

QLoRA 本身讲的是模型本身用 4bit 加载,训练时把数值反量化到 bf16 后进行训练,利用 LoRA 可以锁定原模型参数不参与训练,只训练少量 LoRA 参数的特性使得训练所需的显存大大减少。例如 33B 的 LLaMA 模型经过这种方式可以在 24 GB 的显卡上训练,也就是说单卡 4090、3090 都可以实现,大大降低了微调的门槛。

2025-05-24 15:00:24 642

原创 AI如何看懂足球?上海交大团队打造Multi-Agent系统,全面解析“美丽足球”!

足球AI的“视力”和“脑力”不足!足球被称为“最复杂的团队运动”,但现有的研究却像“只会看画面的球迷”——要么只能识别动作(比如铲球、射门),要么回答不了需要背景知识的问题(比如“某球员上赛季进了多少球”)。

2025-05-24 11:58:05 801

原创 AI Agent为何突然爆火?一文讲透它的原理与未来,看完这一篇你就非常清楚了!!

你是否遇到过这样的情况?问 ChatGPT 一个简单数学题,它可能答错;但如果你给它一个计算器工具,它瞬间变成“数学天才”。这背后,正是AI 智能体(AI Agent)的魔法——让 AI 不仅能“回答”,还会“思考、规划和行动”!今天,我们就来解密这一技术跃迁的全程。你是否想过,为什么现在的AI助手越来越懂你?从单纯回答问题,到现在能帮你安排会议、订餐甚至写代码,这背后离不开AI Agent技术的革命性进步。

2025-05-23 14:27:24 727

原创 AI大模型推理,不再是“一根筋”!!

大模型的推理,就只是算力吗?大语言模型(Large Language Models, LLMs) 自从其问世以来,便迅速成为全球科技领域乃至整个社会的焦点。根据Scaling law,大语言模型的能力与其参数量的对数正相关,因此大语言模型的参数规模也在指数级增长。随之而来的,是大语言模型部署形态的变化。 从神经网络时代的单卡部署,到稠密模型时代的多卡/单节点部署,再到以最近发布的DeepSeek V3/R1模型为代表的混合专家(Mixture of Experts, MoE)模型,它甚至会采用数百

2025-05-23 11:25:04 434

原创 大模型在线辅导小模型,正确率提50%、推理效率涨90%

想一下,一个刚学数学的小学生(小模型SLM),虽然做题快,但遇到复杂问题就容易卡壳。而博士生导师(大模型LLM)知识渊博,但计算成本高。

2025-05-22 14:26:49 852

原创 一文读懂AI系统架构设计:原则、性能、扩展性与容灾全面解析

在AI应用爆发式增长的今天,从ChatGPT类的大模型推理平台,到日活千万的智能客服,再到亿级数据规模的推荐系统,一个高可用、高性能、可扩展的系统架构是AI落地的基石。本文将系统性地拆解AI系统架构设计的核心原则、关键能力和实际场景,通过逐步构建,让你理解:一个真正支撑业务的AI系统架构该如何设计,如何优化,如何进化。

2025-05-22 11:49:41 897

原创 解锁 dify 新玩法:打造人与库表的嗨聊群聊

在日常的繁杂事务中,群聊已然成为我们沟通协作的必备工具。“工作项目推进群”里,成员们各抒己见、攻克难题;“相亲相爱一家人”群中,亲情在温馨的日常互动里流淌。然而,我们的思维是否可进一步拓展?若突破常规,将群聊的对象从熟悉的人转向数据库中的库表,又会碰撞出怎样的创新火花呢?在业务的浩瀚海洋里,每一个库表都恰似一个独特的实体,承载着关键的业务信息。随着业务复杂度的攀升,往往需要多个库表协同作业,恰似工作中面对复杂任务时,需要众多专业人员各展所长、携手并进。

2025-05-21 15:19:41 915

原创 一文看懂 MCP 大模型架构:从事件驱动到智能涌现,全链路实战解构!

从(Know-What)到(Know-How): 1、认知迭代:认知智能体在流程自动化、决策辅助等领域的颠覆性 2、场景淬炼:通过“需求探矿-场景验证-价值量化”三阶模型 3、工程落地:构建Agent的完整技术栈企业要真正跑通“大模型”,不是单靠一个 LLM 就能搞定的,而是需要一整套“连接上下游、支撑大规模、多轮优化”的系统工程。今天这篇文章,我们就来深度解析MCP大模型架构的全景图,从技术底座到交互体验,带你一次性看懂企业级 AI 是怎么“跑起来”的!

2025-05-21 13:58:19 953

原创 在本地部署Qwen3大模型与Dify环境中亲测制作“合同审查智能体”应用,建议收藏!!

每个企业的合同审核需求不同,就像不同病人需要不同的药方。通过Dify的工作流功能,企业可以像搭积木一样定制审核流程。比如:像“预检分诊”一样挑出合同里的问题条款,引用法律条文,并给出专业化修改建议;还能让系统自动翻译合同,为中小外贸企业提升效率。当然,AI存在“幻觉”问题,适当的人工复核是必要的。接下来,我们就看看通过Ollama软件本地部署并运行Qwen3(30b多模态版本:300亿模型参数量),配合本地Docker容器环境运行的Dify软件,来快速开发一个“合同审查智能体”。

2025-05-20 15:03:06 520

原创 DeepSeek V4/R2 应该很快就会来了,而且会有更大的震撼

你有没有发现,DeepSeek 最近没啥动静,这很奇怪。打从过年的时候 DeepSeek R1 火爆 X 平台后,梁文锋出席了几个活动,就没啥动静了。反观阿里呼哧呼哧在两个月内接连上新 QwQ 和 Qwen 3。字节传出即梦 3.0 灰度测试后,近几天又正式发布了 Seed-1.5 VL。

2025-05-20 11:29:02 775

原创 DeepSeek 爆火的当下:2025,人人都是顶尖AI 产品经理实操指南

今年伊始,DeepSeek的横空出世让AI领域再次沸腾。短短20天内,日活用户突破2000万,远超ChatGPT同期表现。他们陆续开源的大语言模型V3、推理模型R1和多模态模型Janus Pro,不仅展现了惊人的性能,更以开源的姿态为整个行业注入了新的活力。面对如此迅猛的AI发展态势,相信很多产品经理都在思考:在这个技术日新月异的2025年,我们的产品之路该如何前进?如何在AI浪潮中抓住机遇?过去一年,"AI在产品管理中的应用"成为了行业的热门话题。“所有产品经理都需要成为AI产品经理” - 这句话

2025-05-19 22:30:00 740

原创 35岁程序员的5条出路:AI赛道疯狂抢人,年薪百万不是梦

前两天收到猎头信息:"某车企智能座舱系统架构师岗位,年薪80万+股权,急招!"这让我想起3年前被优化时,以为职业生涯即将终结的恐慌。如今行业数据显示,掌握核心竞争力的35+程序员反而迎来黄金期,尤其是AI赛道正以3倍薪资抢夺人才。

2025-05-19 21:39:37 697

原创 AI业务需求调研工作思路图&AI大模型相关技术架构图,收藏这一篇就够了!!

这张 “AI大模型相关技术全景图” 采用分层设计,清晰呈现了从底层硬件到上层应用的完整技术体系,各层功能如下:

2025-05-19 21:12:45 619

原创 一文搞懂AI大模型:RAG、Agent与多模态的行业实践与未来趋势

RAG: 大模型的动态知识引擎,解决模型静态知识边界、时效性与可信度问题。Agent: 大模型的智能执行中枢,赋予模型自主规划、决策与工具调用能力。多模态: 大模型的感知升级底座,突破单一模态理解限制,实现真实世界全息认知。知识增强(RAG)→ 行为智能(Agent)→ 感知升级(多模态)→ 完整智能体

2025-05-18 08:00:00 770

原创 Deepseek本地部署详细指南!从 Ollama 到个人知识库应用

以 deepseek r1 模型为例:访问https://ollama.com/library/deepseek-r1,默认为 7b 模型,如需其他模型,可以在当前页搜索所需模型模型详情页复制安装命令ollama run deepseek-r1安装完成后在终端执行:

2025-05-17 08:00:00 1015

原创 中国AI应用繁荣:互联网模式可以参考,不能照搬——2025,把大模型的门槛打下来

大模型产业熬过了“没有超级应用”的2024年,熟悉的论调又再度出现——“2025年AI应用会井喷式增长”。横跨互联网和AI创业的张岩发现,行业好像有两股风向,一股是大模型看起来很美好,但很难落地;另一股是“狼真的要来了”,大模型应用就要走到临界点,错过这一波等于错过未来十年。这种分歧,即便是在最具有创新精神的互联网行业也无法完全避免。

2025-05-16 14:14:24 991

原创 2025程序员转行做大模型职业发展前景好吗?可以选择哪些岗位,如何选择?看完这一篇你就懂了!!

2025年,随着DeepSeek的出现和大模型技术的发展,AI行业迎来了前所未有的热潮。对于许多程序员来说,这是一个不容错过的转行良机。首先,让我们来了解一下当前AI行业的现状。在过去的几年里,AI已经从一个理论概念转变为现实生活中的实用工具。无论是自动驾驶汽车、智能家居设备,还是金融风险评估系统,AI的应用无处不在。而这一切的背后,是无数复杂的大模型在支持着各种功能和服务的实现。DeepSeek作为一匹黑马,在春节期间以一种令人惊艳的方式打破了中外AI大模型竞技场原有的规则。它不仅大幅削减了模型参

2025-05-16 12:01:28 778

原创 本地Dify外挂RagFlow外部知识库效果评测,是骡子是马拉出来溜溜就知道了!

最近在做企业内部的AI知识问答,基于客户提供的内部资料,格式包括PDF、Excel、Markdown、Word、PPT等。之前的技术测评中,发现Dify的知识分块做的不好,召回的效果有时候甚至不能用。综合考虑下,决定用RagFlow切分各类型文档,Embedding后输出接口,挂载到Dify的外部知识库中

2025-05-15 14:35:33 529

原创 AI大模型推理框架RTP-LLM对DeepSeek-V3的优化实践,小白收藏这一篇就够了!!

DeepSeek-V3 在多个评测中展现出强大性能,成为当前最受关注的开源大模型之一。由于采用了大规模 MoE 架构,如何优化推理性能,是工程落地上的关键难点。DeepSeek 团队于 2 月相继开源了 DeepEP、DeepGEMM、FlashMLA、EPLB 等关键组件。在开源社区工作的基础上,我们在RTP-LLM上完成了优化工作,对齐了 DeepSeek 推理系统的性能。RTP-LLM 是阿里巴巴爱橙科技研发的 LLM 推理加速引擎,主要服务阿里集团内部业务。本文将分享实现过程中的一些关键技术点、

2025-05-15 11:57:00 849

原创 RAG-MCP:解决大语言模型工具选择中的提示膨胀难题,收藏这一篇就够了!!

大语言模型(LLMs)在自然对话、推理甚至代码生成方面展现了卓越的能力。然而,它们本质上受到参数中编码的知识和在推理时可用的固定上下文窗口的限制。一个没有外部访问权限的LLM只能依赖其训练数据,无法轻松更新知识或执行超出其内置能力的操作。为了克服这一限制,最近的研究工作集中于通过外部工具和函数调用能力来增强LLMs。通过调用工具(例如网络搜索、数据库、计算器)通过定义的函数或API,LLM可以获取最新信息并执行超出其内置能力的复杂操作。这种范式通常被称为零样本工具使用或函数调用,它使得AI助手能够与最新数据

2025-05-14 14:45:43 870

原创 大白话带你了解:智能体、LLM、RAG和提示词工程,轻松构建下一代应用,小白收藏这一篇就够了!!

大白话带你了解:智能体、LLM、RAG和提示词工程,轻松构建下一代应用,小白收藏这一篇就够了!!LLM就是大家常说的"大模型",比如ChatGPT。它的核心能力就两点:理解人话和说人话。训练过程分两个阶段:

2025-05-14 11:31:41 525

原创 AI行业人才缺口大?这个全套且系统的学习资料助你快速入局AI大模型(含学习路线,经典书籍PDF,行业报告,面试真题,项目实战等)

AI行业人才缺口大?这个全套且系统的学习资料助你快速入局随着AI技术的快速发展,大模型应用需求激增,但学习过程中面临理论知识不足、资源有限、模型调试复杂等挑战。本文提供了一份系统的AI大模型学习路线图,分为四个阶段:初阶应用(10天)、高阶应用(30天)、模型训练(30天)和商业闭环(20天),帮助开发者从入门到精通。学习内容包括大模型基础知识、提示工程、私有知识库构建、模型训练与微调、商业部署等。此外,还推荐了经典书籍、实战案例、面试资料及640套AI大模型报告合集,助力开发者高效学习并提升职业竞争力。

2025-05-13 17:16:49 636

原创 什么是多模态大模型?为什么需要多模态大模型?看完这一篇你就知道了!!

“多模态大模型,就是支持多种数据格式的模型”很多人都听说过多模态,也知道多模态大模型,但如果让你介绍一下什么是多模态大模型,它有什么优点和缺点,以及为什么需要多模态,这时可能就有点傻眼了。从应用角度来说,垂直应用的大模型才应该是未来的趋势,那么为什么还要研究多模态大模型呢?今天我们就来了解一下什么是多模态大模型,以及为什么需要多模态大模型。

2025-05-13 14:02:32 893

原创 手把手教会你玩转本地大模型:Ollama安装+deepseek部署+Dify接入+独立调用全攻略

手把手教会你玩转本地大模型:Ollama安装+deepseek部署+Dify接入+独立调用全攻略

2025-05-13 11:25:41 930

原创 一天吃透一条产业链:AI Agent(智能体)产业链全解

AI Agent(人工智能代理)可以理解为一个会自主办事的智能程序,它能像人一样感知周围信息、自己规划策略,然后动手完成任务。 比如你让它订周末的餐厅,它会先搞清楚你的需求(感知),接着拆解成查评分、看菜单、确认时间等步骤(规划),最后一步步执行预订(行动)。

2025-05-12 11:51:05 690

原创 告别碎片化!两大先进分块技术如何提升RAG的语义连贯性?看完这一篇你就懂了!!

RAG通过动态整合外部知识,解决了传统大语言模型(LLMs)依赖静态预训练数据的局限性。在开放域问答、实时信息生成等场景中,RAG能显著提升生成内容的准确性和信息完整性。对知识密集型任务(如医疗问答、法律分析)至关重要,需高效管理大规模外部文档。

2025-05-12 11:04:26 840

原创 超实用!用 Ollama + DeepSeek + Dify 搭建本地知识库,提升企业效率

今天给大家带来一个超实用的开源工具组合,能帮企业快速搭建本地知识库,提升内部信息管理效率。这个组合就是 Ollama + DeepSeek + Dify,接下来我详细说说怎么操作,保证小白也能轻松上手!

2025-05-11 08:00:00 748

原创 万字长文!一文搞懂该如何为你的大模型(LLM)应用选择合适的评估指标

随着越来越多的 LLM 应用进入生产环境,建立一个评估流程变得尤为重要,用以跟踪你的应用表现如何。LLM 评估就像定期的质量检查。它们能确保你的AI工具按预期工作——无论是编写代码、总结内容,还是回答客户支持问题。这些评估应在产品生命周期的每个阶段进行。它们在衡量你的LLM应用成功程度方面起着重要作用。同时还能实时监控性能。如果模型开始表现不同或性能下降,这些检查可以尽早发现问题——在用户开始注意到并报告问题之前。

2025-05-10 14:11:04 890

原创 检索增强生成(RAG)技术演化总结!从传统RAG到GraphRAG,再到Agent检索!小白收藏这篇就够了!!

检索增强生成(RAG)可以让基础大模型从其知识截止日期之后的外部信息源中获取知识,减少模型幻觉,并在回答时引用特定的信息来源。但RAG并非一个单一的技术。它是一系列持续发展的创新,每一项都在解决信息获取、思考行动和信息综合生成等方面的不同挑战。「本文将为大家介绍RAG技术的演变,从最早的查询转换,到图结构知识检索,再到Agent检索」;所有这些都是为了应对更难的信息查找和推理任务。

2025-05-10 11:51:35 942

原创 本地部署大模型实现扫描版PDF文件OCR 识别,笔记本可跑!建议收藏!!

在使用大模型处理书籍 PDF 时,有时你会遇到扫描版 PDF,也就是说每一页其实是图像形式。这时,大模型需要先从图片中提取文本,而这就需要借助 OCR(光学字符识别)技术

2025-05-09 14:42:53 680

原创 必看!DeepSeek + 飞书多维表格,打造 AI 知识库(保姆级教程)

DeepSeek,作为一款功能强大的AI工具,在信息检索与处理方面有着独特优势。而飞书多维表格凭借其灵活的数据管理和协作能力,为构建个性化知识库提供了绝佳平台。飞书多维表格自接入了deepseek之后,二者的强强联手,极大提高了工作效率。这个选题是我一直都想做还没开始做的,今天我就为大家带来一个超实用的教程 —— 使用 DeepSeek 结合飞书多维表格,打造属于你的 AI 知识库,让工作和学习效率直接提升百倍,手把手教你搭建自己的AI知识库哦!

2025-05-09 11:35:19 1234

原创 如何用知识图谱+医疗问答对合成推理数据?兼看Deep Research的两个复刻实现拆解

基于知识图谱+医疗问答对合成推理数据思路MedReason基于知识图谱+问答对合成推理数据工作。从医疗数据集中提取问答对,然后使用LLM提取问答中的实体

2025-05-08 14:29:10 917

原创 【AI+Excel操作实例】我用DeepSeek制作了一个表单录入工具,让Excel像网页一样!

前期测试发现DeepSeek在代码编写能力上十分优异,因此DeepSeek已经成为了作者在工作中不可或缺的搭档。本期我们利用DeepSeek制作了一个实用小功能:【表单录入工具】。对销售数据、出入库数据的可视化录入、数据源的保护具有极大的优势。功能实现的效果如下图:

2025-05-08 11:46:30 927

原创 【大模型微调】AI大模型私人定制:5分钟教你不写一行代码微调构建属于你的大模型(使用llama-factory微调Qwen大模型)

什么是大模型微调?1.1 为什么进行大模型微调大模型微调原理简介大模型微调分为全参微调和高效微调,全参微调就是将大模型所有层的参数进行微调,优点是可以充分利用已有大模型的特征,缺点是调整全部参数需要消耗大量的计算资源。高效微调旨在最小化微调参数量和计算复杂度提升训练模型在新任务上的表现。即使在计算时间和资源受限的情况下,高效微调技术也能够利用模型的知识快速适应新任务。

2025-05-07 14:30:50 861

原创 构建企业级高可靠 AI Agent 系统架构设计的关键要素,建议收藏!!

AI Agent 则是 LLM 动态指导自身流程和工具使用,控制它们完成任务的方式的系统。Anthropic 对 AI Agent 的定义更加精确和具有技术性。他们也提到了“AI Agent 系统”这个概念,并将工作流和 AI Agent 都归类为它的变体。我们看到的几乎所有生产中的“AI Agent 系统”都是“工作流”和“AI Agent”的组合。Anthropic 将 AI Agent 定义为“本质上只是基于环境反馈在循环中使用工具的 LLM”。

2025-05-07 11:33:39 799

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除