- 博客(1028)
- 收藏
- 关注
原创 【RAG落地利器】向量数据库Weaviate部署与使用教程,零基础小白收藏这一篇就够了!!
Weaviate 是一种开源的向量搜索引擎数据库,允许以类属性的方式存储 JSON 文档,并将机器学习向量附加到这些文档上,以在向量空间中表示它们。Weaviate 支持语义搜索、问答提取、分类等功能,并且可以通过 GraphQL-API 轻松访问数据。
2025-09-14 08:00:00
447
原创 AI大模型应用开发指南:Function Calling技术详解,建议收藏学习!
文章介绍了Function Calling技术在大模型应用开发中的必要性及工作流程,解决大模型无法处理实时数据和系统交互的问题。通过四步流程(用户请求解析、函数调用指令生成、外部函数执行、结果整合)详解FC技术,并以天气查询API为例,展示如何使用DeepSeek API实现Function Calling功能,帮助读者掌握大模型与外部工具交互的实用技能。
2025-09-13 16:38:31
318
原创 一文详解!大模型蒸馏、RAG、微调技术详解与选型指南,零基础小白收藏这一篇就够了!
文章主要介绍了大模型的三大技术:蒸馏(适合资源受限场景)、检索增强(RAG)(适合需要外部信息更新的应用)和微调(适合领域专用场景)。详细分析了各技术的概念、优缺点、适用条件及典型案例,并介绍了微调技术中的LoRA和QLoRA方法,为不同需求场景提供了技术选型参考。
2025-09-13 16:12:13
475
原创 32B小模型超越GPT-5,医疗AI的动态验证系统与多阶段强化学习,看到就是赚到!!
Baichuan-M2通过创新的动态验证系统和多阶段强化学习策略,解决了医疗AI在静态基准与实际应用间的差距。该模型结合患者模拟器和临床评分生成器,构建虚拟临床环境进行训练,在仅320亿参数情况下,于HealthBench测试中超越多数开源和闭源模型。文章详细介绍了其系统架构、训练流程、性能表现及推理优化,展示了小参数模型在复杂医疗推理任务上的突破,具有极高实用价值。
2025-09-13 15:28:15
389
原创 【AI大模型】一文详解大模型分布式训练有哪些策略?零基础小白看完这一篇就懂了!!
本文介绍了分布式训练在大语言模型中的必要性与实现策略。面对千亿参数模型单机无法训练的困境,分布式训练通过数据并行、模型并行和混合并行三种方式,将任务拆分给多设备协作完成。这些技术能突破单机算力、显存限制,将训练时间从数十年缩短到几十天,同时面临计算墙、显存墙和通信墙等挑战,是训练大语言模型的必经之路。
2025-09-12 17:23:08
450
原创 【金九银十】25道大模型算法面试真题+答案解析,涵盖transformer、RAG、Agent、模型微调等,秋招必刷!!
这是一份大模型面试题库,涵盖Transformer架构、位置编码、大模型应用技术(RAG、Agent)、模型优化(量化、蒸馏、剪枝)、训练问题(梯度消失/爆炸)、评估指标、微调技术及数据并行与模型并行等核心内容。专为准备大模型算法秋招的求职者设计,包含大量面试题和实用技术,帮助求职者掌握大模型面试所需的关键知识点,提升就业竞争力。
2025-09-12 16:49:21
862
原创 一文讲清提升RAG性能的13种分块策略,零基础小白收藏这一篇那就够了!!
文章详细介绍了RAG系统中的13种分块策略,包括固定长度、句子、段落、滑动窗口、语义分块等,分析了各自的优缺点和实施建议。选择策略需考虑文档类型、查询复杂性、资源可用性和期望结果。良好的分块能提高检索效率和相关性,保持上下文完整性,但需避免上下文丢失、冗余等问题。开发者应根据实际应用场景选择合适的分块方法,以优化大模型性能。
2025-09-12 16:28:03
438
原创 大模型微调数据集构建指南:6步提升企业AI应用效果,看到就是赚到,收藏这一篇就够了!!
本文详细介绍了企业私有数据转化为大模型微调数据集的六步流程:规划与准备、数据收集与整理、数据清洗与预处理、数据格式化与标注、质量保证与数据集构建、安全维护与迭代。文章强调了数据质量对微调效果的决定性作用,提供了具体的数据来源、格式转换、清洗技术、标注方法和质量控制措施,帮助开发者构建高质量的企业级微调数据集,提升大模型应用效果。
2025-09-11 17:03:57
749
原创 一文搞懂RAG:大模型检索增强生成技术入门到精通,零基础小白收藏这一篇就够了!!
本文介绍RAG技术基础,解释为何需要RAG解决大模型知识截止、缺乏领域深度和私有数据访问问题。详细阐述RAG四大核心组件(摄取、检索、增强、生成)及工作流程,包括数据入库、混合搜索、增强提示和生成回答。RAG优势在于可访问实时专有数据、建立信任、提供更多控制,是比模型微调更轻量级的解决方案。
2025-09-11 16:40:31
498
原创 保姆级教程:Dify插件开发与上传应用市场全过程,全程干货,简单易懂,建议收藏!!
本文详细介绍了Dify插件开发并上传至应用市场的完整流程。从准备PRIVACY.md和英文README.md文档,到将插件打包为.difypkg文件,再到通过fork仓库、创建分支、提交PR等步骤完成上传,最后解决常见问题。这套实操指南帮助开发者高效地将插件推向应用市场,无需为文档格式和上传步骤走弯路,让优质插件发挥更大价值。
2025-09-11 16:01:17
634
原创 腾讯大模型二面亲历:vLLM问得太细?别慌!一文搞懂高性能推理核心,面试避坑指南,建议收藏!
本文详细解析vLLM V1引擎的优化技术,包括输入处理并行化、分段式CUDA图、分离式预填充、分页注意力等方法,探讨级联推理、推测解码、KV缓存等高级技术,以及多种并行策略和量化技术,为大模型推理提供全面优化方案。
2025-09-10 12:00:33
484
原创 AI大模型进阶指南:多智能体系统6种设计模式详解,收藏这篇就够了!!
文章介绍了多智能体(Multi-Agent)系统的六种常见设计模式:Sequential(顺序处理)、Router(任务调度)、Parallel(并行执行)、Generator(任务分解)、Network(网络协作)和Autonomous Agents(自主决策)。这些模式就像团队协作的方法论,各有适用场景,可根据需求组合使用。随着AI从单一大模型向多智能体协作发展,掌握这些设计模式将有助于构建更高效、更强大的AI系统。
2025-09-10 11:33:19
592
原创 一文详解LangChain 重磅发布 AI 智能体中间件,彻底告别 “失控”,收藏这一篇就够了!!
本文详解了LangChain 1.0新推出的智能体中间件,它通过全流程干预、灵活组合和开箱即用三大能力,解决了传统AI智能体框架在生产中难以灵活定制、上下文控制难等问题。开发者无需修改底层代码,即可在模型调用各阶段插入自定义规则,实现对话总结、人机协同等高级功能,让AI智能体从Demo成功走向生产环境。
2025-09-10 10:40:09
914
原创 【收藏学习】大模型技术前瞻:从DeepSeek交底看MoE架构与Agentic AI未来
本文从DeepSeek技术交底分析大模型未来:MoE架构通过稀疏激活专家网络实现万亿参数效率革命;Agentic AI使模型具备目标分解与自我反思能力;下一代训练强调数据质量与多智能体协作;通过红队测试等解决幻觉问题;未来将发展超级专家系统、社会智能体和可解释AI。开源生态与MoE+Agentic架构将推动大模型向更自主思考方向发展。
2025-09-09 14:00:53
714
原创 大型语言模型综览,从Transformer架构到提示工程全解析,零基础小白收藏这一篇就够了!!
文章系统介绍了驱动当今语言模型的Transformer架构及其演进历程。从2017年Transformer的提出,到BERT的掩码语言建模和GPT的因果语言建模,再到通过人类反馈进行微调和强化学习的InstructGPT与LaMDA等模型,展示了大模型技术的发展路径。文章重点解释了注意力机制如何提升长序列处理效率,以及提示工程如何使模型更好地对齐用户意图,为理解大模型技术提供了全面视角。
2025-09-09 11:38:43
607
原创 【AI大模型实战】使用LangChain和向量数据库构建高效RAG问答系统,解决大模型幻觉问题,建议收藏!!
本文详细介绍了如何使用LangChain框架结合向量数据库构建RAG系统,解决大模型在回答领域知识时的幻觉问题。文章从环境配置开始,逐步演示了文档加载与切分、向量数据库构建、大模型接入以及检索增强问答链的全流程实现。通过检索外部知识库,RAG系统能够提供更准确的回答并引用来源,显著提升大模型在特定领域的应用效果。
2025-09-09 10:39:20
782
原创 AI大模型AutoGen入门实战:从零开始构建ReAct智能体框架,全程干货,建议收藏!!
本文详细介绍微软开源的AutoGen多代理对话框架及其ReAct智能体实现方法。文章从环境搭建、依赖安装到代码实现,手把手教读者如何创建基于ReAct提示词的智能体,使其通过推理-行动-观察循环完成复杂任务。提供完整代码示例和运行结果,适合程序员快速上手AutoGen框架开发,助力构建基于LLM的智能应用。
2025-09-08 08:30:00
640
原创 AI大模型微调利器LLaMA Factory:从原理到实践完整指南,零基础小白收藏这一篇就够了!!
LLaMA Factory是专为Meta LLaMA系列模型优化的开源微调框架,采用LoRA、QLoRA等参数高效微调技术,显著降低显存占用和训练成本。框架包含模型、数据、训练、推理部署及工具扩展五大核心模块,支持垂直领域微调、对话系统构建、轻量化部署等多种场景。提供简单易用的配置和脚本,让开发者能在有限算力资源下快速定制大模型,是入门大模型微调的理想选择。
2025-09-08 08:00:00
963
原创 Dify实战:手把手教你用RSS聚合8大平台实时热点,AI自动摘要,新闻效率飙升,建议收藏!
在当今信息化浪潮席卷的时代,海量媒体资讯如潮水般每日涌来。然而,受制于有限的时间与精力,人们往往更倾向于聚焦两类信息:一类是与自身兴趣深度契合的个性化新闻,另一类则是当下全网热议的焦点事件。在此背景下,能否快速、精准地捕捉实时热点资讯,成为现代人高效获取信息、把握时代脉搏的关键所在。不过之前的案例是通过爬虫方式实现最新的新闻获取,时效性不够,另外新闻覆盖的内容也不全面。今天给大家介绍使用RSS多平台新闻聚合结合dify实现一个多平台实时获取最新新闻资讯的工作流。
2025-09-07 08:30:00
676
原创 【AI大模型实战】零基础教程:用Ollama+DeepSeek-R1+Open WebUI,本地搭建你的专属AI助手,私有离线,建议收藏!
本文主要介绍如何在Ubuntu操作系统环境下,零基础快速安装Docker环境、安装Ollama、安装本地大模型DeepSeek-R1和大模型可视化工具Open WebUI,快速在本地搭建一款专属AI智能小助手。
2025-09-07 08:00:00
564
原创 【喂饭教程】手把手教你从0搭建AI Agent,跟完即入门,大模型Agent学习收藏必备!
现阶段国内外主流的智能体开发平台数量不在少数,像国内字节跳动的Coze(扣子开发平台),国外的Dify、FastGPT、n8n等等。但说到其中最容易上手、界面最友好的,当属Coze,这也是我目前接触最多的开发平台,那今天我将以Coze平台作为实操载体,带着大家一起入门Agent!
2025-09-06 08:30:00
1005
原创 Claude Code 实战教程:手把手对接DeepSeek-R1与Kimi K2,AI编程效率翻倍,建议收藏!
上下文工程不是简单的“提示词工程”,而是将提示词视为设计文档、任务分解和结对编程的结合。好的提示词就像与 AI 进行高效协作:清晰的目标、充足的背景、逐步引导,确保 AI 理解并高效完成任务。
2025-09-06 08:00:00
754
原创 一文讲清大模型高效微调低秩适配方法,从零开始学LoRA大模型微调的参数效率神器,零基础小白收藏这篇就够了!!
LoRA是一种高效的大模型微调方法,通过低秩矩阵近似参数更新,大幅减少训练参数量。它仅训练两个小矩阵,显著降低显存需求,提高训练速度,同时保持性能。LoRA具有可插拔特性,可作为插件在不同任务间共享和组合。文章还介绍了ReLoRA、AdaLoRA、DoRA等变体,以及LoRAHub实现多任务泛化的方法,为开发者提供了灵活高效的大模型微调解决方案。
2025-09-05 11:54:49
655
原创 【喂饭教程】手把手教你基于Dify的公司制度检索问答Agent实践,企业知识管理新范式
本文详细介绍制度检索问答Agent的价值与实现流程。通过自然语言处理与知识检索技术,解决企业制度文档检索繁琐、理解不一致、更新延迟等问题。文章分享了从用户问题处理、知识库检索到生成回复的完整搭建步骤,包括OCR工具选择、文档分块、Embedding模型选型等技术细节,并提出了未来优化方向。该Agent可提升组织合规效率与员工协同体验。
2025-09-05 10:52:16
601
原创 【秒懂大模型】Transformer结构全解析:大模型开发的基石与PyTorch实现,建议收藏!!
本文详细解析了Transformer架构的核心组件,包括输入嵌入与位置编码、多头注意力机制、前馈神经网络、残差连接和层归一化。作为现代大语言模型的基础,Transformer通过自注意力机制捕获序列长距离依赖,摒弃了传统循环结构。文章提供了各模块的PyTorch实现代码,帮助读者理解并实践这一革命性模型架构,为深入学习大模型奠定基础。
2025-09-05 10:25:52
536
原创 【大模型入门教程】一文讲清检索增强生成(RAG)技术详解与应用实践,零基础小白收藏这一篇就够了!!
RAG技术结合大模型与外部数据,有效解决数据安全、成本高昂、领域知识不足、知识过时、幻觉问题和长尾知识覆盖有限等痛点。其架构包括入库、输入、检索和生成四大模块,检索采用多路召回策略,生成融合大模型输出。该技术可应用于补全、问答、总结等任务,在金融、医疗、法律等多个领域有广泛应用价值。
2025-09-04 18:42:27
682
原创 【喂饭教程】Dify + 高德 MCP实战:从零开始构建出行规划与工厂调度Agent,看懂就是赚到,建议收藏!!
文章介绍了Dify与高德MCP的融合应用,通过这种结合可构建具有空间感知能力的智能体,用于出行服务和制造业数字化转型。文章详细阐述了技术融合的意义、应用场景,并提供了在Dify中搭建智能体的具体步骤,包括创建应用、获取Key和配置MCP服务等,帮助读者实现从智能出行规划到工厂调度的多种应用场景,为开发者提供了实用的技术指导。
2025-09-04 13:51:21
729
原创 收藏必备 | 从提示工程到上下文工程:大模型应用开发的核心技能
上下文工程是设计和构建动态系统的学科,为LLM提供完成任务所需的一切,它比提示工程更全面。这既是一门科学,需要合理组织任务描述、示例、RAG、工具等技术元素;也是一门艺术,涉及LLM的心理学特性。构建强大可靠的AI智能体需要构建上下文,并在正确时间以正确格式提供正确信息和工具,这是跨职能的挑战,需要理解业务用例并构建必要信息以便LLM更好地完成任务。
2025-09-04 11:20:09
974
原创 通用Agent已死,这个方向才是未来!!收藏这份AI Agent学习指南:2025年大模型应用开发全攻略
2025年被视为"AI Agent元年",AI Agent已从概念走向落地,主要得益于三大因素:更强大的大模型、协议标准化以及交互范式确立。初创公司凭借速度优势领先,但通用Agent面临大厂自研功能的挑战。未来,垂直化Agent和人类软实力将成为关键,人类需从执行者转变为AI指挥家,专注于领导力、沟通力和战略判断等AI难以替代的能力。
2025-09-03 14:49:22
529
原创 程序员收藏!7种RAG AI智能体架构设计,从零开始掌握大模型应用开发
本文详细剖析了7种RAG AI智能体架构设计,包括路由、查询规划、工具使用、ReAct、动态规划、验证和记忆智能体,每种类型都有实际应用案例。这些智能体不仅检索信息,还能规划、路由、验证并实时调整,通过协同工作形成分层架构,使AI系统更智能。企业落地发现这些智能体能主动采取行动,是构建高效大模型应用的重要组成部分。
2025-09-03 11:36:55
481
原创 “人工智能+“来了:这次真的不一样,三年后你的生活将彻底改变
估计昨晚科技圈的朋友们估计都没睡好——国务院刚发布的《关于深入实施"人工智能+"行动的意见》直接刷屏了。这份编号"国发〔2025〕11号"的文件,可不是普通的政策吹风,而是给未来十年的AI发展按下了快进键。
2025-09-02 11:59:16
844
原创 从 EchoLeak 到 AgentFlayer,深入解析RAG系统安全风险:间接Prompt注入攻击原理与防御实践,建议收藏!!
本文分析了RAG系统面临的安全威胁,特别是间接Prompt注入攻击(如EchoLeak和AgentFlayer)。攻击者通过在数据中隐藏指令,利用模型自动外传功能窃取敏感信息。风险源于对数据可信度、模型顺从性与渲染链路的误判。防御需采用语义感知的多层净化检查、AI Agent最小权限及对外连输出的拦截审计,而非仅靠语法规则匹配。
2025-09-02 10:51:34
776
原创 【干货收藏】中医名医AI智能体(LLM)技术方案:从理论到实践,打造中医传承新范式
《中医名医AI智能体(LLM)技术方案》通过构建专属知识图谱、辨证逻辑推理引擎及动态学习机制,为每位中医名医打造个性化AI大脑。采用大模型+RAG架构,整合多模态数据采集、知识图谱构建、辨证逻辑建模等技术模块,实现中医知识的沉淀、传承与创新。项目预期达到90%+的辅助诊疗准确率,包含5000+结构化病例,提升知识储备丰富度75%+,为中医传承与发展提供AI解决方案。
2025-09-01 12:00:45
966
原创 从零开始:AI助力2小时打造股票分析系统,必备收藏指南!
利用AI辅助,在2-3小时内搭建了股票分析平台,实现了获取上证A股实时数据并进行展示和分析的功能。当前平台可进行基本查询和统计分析,未来计划扩展多股对比和个股深入分析。作者强调了AI在现代快速开发中的重要作用,展示了AI技术如何帮助开发者高效构建实用工具。
2025-09-01 11:11:51
876
原创 AI大模型面试题详解:如何提升RAG准确度之语义检索的核心引擎?看完这一篇你就知道了!!
本文详细解析了如何通过优化Embedding技术提升RAG检索准确率,介绍了七大关键优化路径:模型选型、数据清洗、模型微调、相似度度量、性能优化、评估迭代和进阶优化。强调Embedding优化需贯穿全链路技术环节,从数据处理到系统评估,只有持续优化才能在海量数据中精准定位语义相关结果,为企业和面试者提供实用指导。
2025-08-30 21:45:16
840
原创 【喂饭教程】手把手教你使用n8n 工作流 + ES 日志 + AI,数据洞察一键 get,解锁日志分析新姿势
文章介绍了一个基于n8n工作流和AI的日志分析系统,通过定时任务每小时查询ES最新日志,利用AI Agent分析潜在故障。详细展示了工作流节点设置、日志降噪处理、AI Agent配置及提示词设计,并分享了1.0到3.0版本的优化过程,包括日志过滤和分类处理。该方案能帮助运维人员发现平时注意不到的系统问题,提高运维效率,改变传统运维模式。
2025-08-30 21:15:15
1095
原创 【必收藏】小白也能学会!用AI自动解读论文并构建知识库,打造个人AI知识管理系统
本文介绍了一个基于n8n、DeepSeek API和Notion的自动化系统,实现每天自动抓取最新AI论文、AI深度解读、自动整理成知识库并生成微信推文的功能。系统通过定时触发、智能分析和结构化存储,解决了信息过载问题,建立了个人专属AI知识助手,还能一键生成多种格式输出提升工作效率。文章详细分享了系统架构、数据流转、技术要点及实现方法,适合小白和程序员参考学习。
2025-08-29 11:58:52
547
原创 【AI大模型实战】手把手教你使用Ollama+DeepSeek-R1+RAGFlow 搭建本地RAG专属知识库,建议收藏!!
本文主要围绕 RAGFlow 的构建知识库、搜索、Agent、文件管理等核心应用功能模块,结合大模型 LLM,零基础如何实现在本地快速搭建RAG专属知识库、智能搜索问答系统、Agent智能助手应用,以及RAGFlow 在应用过程中的常见问题与解决方案。
2025-08-29 11:14:17
590
原创 别再从头造轮子了!RAG 的“分而治之”哲学,让大模型落地更轻松!
"分而治之"是工程学中的经典思想——将复杂问题拆解为相对独立的子问题,分别解决后再统一整合。这一思想在RAG(检索增强生成)技术的设计中得到了完美体现,从知识与能力的分离,到检索与生成的协作,RAG技术的每一次技术迭代都蕴含着分而治之的工程智慧。
2025-08-28 11:47:38
939
原创 【AI大模型实战】5步构建一个“信息搜集+报告生成”的AI助理,全程干货,简单易懂!!
本文介绍如何通过5个步骤搭建专属AI助理自动生成研究报告:1.精确拆解需求;2.选择合适技术平台和工具;3.设计自动化工作流;4.优化提示词工程;5.持续测试迭代。这一过程将人们从繁琐的信息搜集整理中解放出来,让AI成为能力的延伸,专注于创造性思考,实现人机协同的高效工作模式。
2025-08-28 11:13:11
610
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人