自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1545)
  • 收藏
  • 关注

原创 掌握RAG核心技术:知识库处理、高效召回与图谱检索 | 大模型学习必备收藏

文章介绍了RAG高级技术与调优的系统方法,主要涵盖三大方向:知识库处理(问题生成、对话沉淀、健康度检查、版本管理)、高效召回(查询扩展、混合检索、重排序、其他策略)和图谱检索(GraphRAG)。通过这些技术可以显著提升RAG系统的检索准确率和性能,为构建高质量的大模型应用提供支持。

2026-02-10 13:22:00 374

原创 AI大模型入门指南:Agent、Workflow和MCP概念详解,收藏学习不迷路

文章详解AI三大核心概念:Agent(自主决策AI程序)、Workflow(固定流程自动化工具)和MCP(AI调用外部能力协议)。三者互相配合:MCP解决连接问题,Workflow串联任务,Agent处理复杂决策。文章分析各自特点、适用场景及组合方式,帮助开发者根据需求选择合适架构,为AI应用开发提供指导。

2026-02-10 13:20:50 189

原创 大模型智能体设计模式:21种核心模式详解,助你成为AI专家

本文系统介绍AI智能体的基本概念、特性、执行步骤与等级划分,详述21种设计模式包括提示链、路由、并行化等,并展示如何组合这些模式构建复杂系统。文章揭示了智能体从LLM演化而来的技术演进,强调多模式组合而非单一应用的设计理念,为开发者提供构建自主智能体的体系化工具箱,适合大模型学习与实践参考。

2026-02-09 13:09:30 897

原创 【收藏学习】向量数据湖赋能Context Engineering:RAG到Agent的技术演进

文章探讨了从传统RAG到Context Engineering的技术演进,指出AI应用正从单轮问答向多轮Agent发展。Milvus提出的向量数据湖通过湖仓一体架构,统一管理多模态上下文数据,支持混合搜索、多模态处理和动态管理。其创新包括存算分离、多引擎协同和智能冷热分层,解决了数据孤岛与扩展瓶颈,为下一代AI应用提供高效、灵活、可扩展的上下文基础设施。

2026-02-09 13:08:19 630

原创 Java开发者转型AI Agent:从入门到精通(完整指南,建议收藏)

本文为Java开发者提供AI Agent转型指南,系统介绍AI Agent概念、与工作流的区别、核心组件(LLM、工具、记忆)及ReACT框架。详细解析工作流模式与Agent模式,深入探讨多Agent架构。文章不卖课,提供实用知识,帮助读者理解何时使用Agent、如何构建系统及避免常见陷阱,适合希望进入AI领域的Java开发者学习收藏。

2026-02-09 13:06:57 1015

原创 收藏!6种多智能体架构模式,破解AI“单体智能体墙“性能难题

本文探讨AI"单体智能体墙"现象,即单个智能体在超过10-15个工具后性能断崖式下跌的问题。文章提出6种多智能体架构模式:顺序流水线、并行扇出、层级监督、路由分发、反思迭代和共识投票,分别适用于不同场景。设计多智能体系统应像管理团队而非写代码,先从单体开始,逐步升级。多智能体系统已成为2026年复杂AI任务的事实标准,能有效解决单智能体的指令迷雾和工具过载问题。

2026-02-05 13:34:05 505

原创 多智能体系统的核心秘诀:Agent交接机制详解,从原理到落地,收藏级学习指南

文章详细解析了多智能体系统中的Agent交接机制,这是解决单个智能体能力边界不足的关键。文章介绍了交接机制的三大分类(自主直连式、规则触发式、Supervisor管控式),重点阐述了Supervisor管控式交接的四步实现流程(触发判断、交接准备、执行交接、后续协同),以及三大核心设计要点(标准化、无状态化、可追溯)。同时提供了典型问题解决方案和不同架构下的落地适配,为企业级多智能体系统落地提供实用指导。

2026-02-05 13:32:55 889

原创 大模型搜索Agent核心架构:拆分与评估两大问题解决方案(收藏版)

本文系统介绍了深度搜索Agent的架构演进:从基础迭代式Agent到并行工作流,再到动态拆分问题的Planner-Only架构,以及加入评估反馈的双模块设计。详细讲解了停止条件处理、澄清问题机制和检查清单评分等评估方法,最后介绍了Sentient Labs的递归式ROMA架构。文章强调不同架构适用于不同场景,建议从简单架构开始,逐步叠加模块,根据具体问题选择合适方案。

2026-02-05 13:13:41 819

原创 RAG系统大对决:让AI自己做决策真的更香吗?Enhanced vs Agentic全方位实测揭秘!

文章对比了Enhanced RAG与Agentic RAG两大系统在用户意图处理、查询改写、文档优化和模型影响四个维度的表现。研究发现:窄域任务中Agentic更优,开放域任务Enhanced更稳定;查询改写环节Agentic平均提升2.8个NDCG点;文档精选时Enhanced重排序效果更好;Agentic成本是Enhanced的3-4倍。建议根据场景、预算和需求选择架构,或考虑混合方案。

2026-02-04 18:22:28 835

原创 Anthropic大模型Agents构建全攻略:从理念到实践的极简指南

Anthropic团队分享了构建高效LLM Agents的设计理念,强调"实用优先、简洁可控、按需适配"的逻辑。核心原则包括:最小复杂度优先,架构按需匹配,模块化可组合,透明可控,以及人机协同。文章详细介绍了从增强型LLM基础块到workflows和Agents的构建方法,并提供了客户支持和编码两个实用场景的最佳实践,帮助开发者打造功能强大且可靠可维护的Agents系统。

2026-02-04 18:20:48 538

原创 企业AI Agent频频失败?本体论解决方案揭秘,小白也能轻松掌握

本文分析了企业AI Agent项目失败的核心问题:尽管拥有数据却依然"盲目",现有工程手段仅能局部"止痛"。文章提出本体论作为关键解决方案,通过构建企业"语义层"统一概念与关系,支撑复杂推理,减少误解与幻觉。最后详解构建本体的6块核心积木,为读者提供了从理论到实践的完整指南。

2026-02-03 13:17:35 907

原创 图解AI三大核心技术:RAG、大模型、智能体

图解AI三大核心技术:RAG、大模型、智能体

2026-02-03 13:15:55 367

原创 RAG调优全攻略:解决大模型知识库检索难题,从入门到精通的实战指南

本文深度解析了RAG系统从基础到高级的调优全流程,包括知识库的精耕细作(检索优化、对话沉淀、健康度检查)、高级召回与排序技术(混合检索、重排序、查询扩展)以及GraphRAG架构解决复杂查询问题。文章指出RAG系统优化应分阶段实施:起步期引入混合检索,成熟期加入重排序和查询改写,巅峰期部署GraphRAG,并需在准确率与响应时间间进行权衡,以适应不同业务场景需求。

2026-02-03 13:14:25 794

原创 【干货收藏】AI Agent部署完全指南:四种形态选择与最佳实践

文章详细介绍了AI Agent的四种主流部署形态:批处理式(Batch)、流式(Streaming)、在线服务型(Real-time)和端侧(Edge)。每种部署方式都有其典型特征、架构形态、应用场景及优缺点。核心观点是AI Agent的部署方式决定了其功能定位,而非仅依赖模型能力。成熟的Agent系统往往是多种部署方式的组合,选择正确的部署形态对Agent的成功落地至关重要。

2026-02-02 20:29:01 909

原创 一文搞懂大模型三大推理框架:CoT、ReAct、ToT从入门到实战

ReAct、CoT、ToT是大模型三大推理框架,分别代表线性推理、推理+行动闭环、多分支探索的进阶路径。CoT适合简单推理问题,ReAct是AI Agent核心框架支持工具交互,ToT实现高阶树状推理解决复杂问题。开发者可根据任务复杂度、成本和模型能力选择框架,ReAct+CoT是当前工业界"黄金组合",ToT则是未来发展方向。

2026-02-02 20:27:35 878

原创 35岁Java程序员的AI逆袭之路:从被优化到年薪40万的大模型专家

35岁Java程序员老李被公司优化后,通过系统学习AI大模型技术,将Java与AI结合开发智能推荐系统,成功实现职业转型。他从零开始学习Python和机器学习,掌握深度学习框架,最终成为AI大模型开发工程师,薪资翻倍达40万。文章证明,在AI时代,Java程序员只要勇于学习新技术,年龄不是障碍,完全可实现职业逆袭和高薪梦想。

2026-02-02 20:26:34 847

原创 一文弄懂AI“幻觉“是什么?收藏!AI产品经理必备的5大解决方案

本文深入解析大模型"幻觉"现象,包括其定义、类型及产生原因。系统介绍5种核心解决方案:RAG检索增强、模型微调、提示词工程、多模型验证及外部规则系统,并提供AI产品经理在实际项目中落地防幻觉体系的完整框架,帮助构建可控、可预测的AI产品。

2026-01-31 13:11:15 831

原创 2026年AI热点预测:智能体工程全解析(小白到专家都值得收藏)

智能体工程是将不确定的LLM系统优化为可靠生产级应用的工程化过程。面对LLM不确定性、上下文管理等五大鸿沟,通过四层能力架构及十大工程维度,实现AI系统可控性与可预测性提升。随着2026年AI智能体进入工程时代,掌握智能体工程方法论将成为开发者的核心竞争力。

2026-01-31 13:09:11 707

原创 RAG技术详解:给AI装个“实时查资料“的外挂,告别瞎编!

RAG技术结合信息检索与自然语言生成,为AI提供实时查资料能力,解决传统AI"记不住新东西、容易瞎编"的问题。通过知识库分块、语义编码、向量检索、构建带资料的提示词等步骤,让大模型从"靠记忆答题"转变为"拿着参考资料回答的靠谱考生",使输出更准确、有依据且可溯源,广泛应用于聊天机器人、智能助理等场景。

2026-01-31 13:07:25 636

原创 AI Agent技术解析:从ReAct框架到Manus,看AI如何学会“思考“

AI Agent经历了从ReAct到OODA再到Manus的进化,实现了从被动响应到主动决策的转变。ReAct建立思考-行动-观察闭环;OODA增加定向环节强化决策;Manus通过三代理架构和压实技术实现专业化分工。未来将向认知循环体发展,突破意义建构能力,需架构上的"数字宪法"确保与人类目标一致。

2026-01-29 10:10:12 649

原创 2026必学!AI Agent架构、A2A与MCP协议全解析,程序员收藏指南

文章详细介绍了AI Agent作为2026年AI生态核心概念的技术架构,包括感知、规划、行动、记忆和反思五大关键组件。同时解析了A2A Agent协作协议和MCP工具调用标准,以及Agent Skills能力模块化概念。这些技术使Agent能够自主决策、分解任务、调用工具、记忆上下文并自我纠错,广泛应用于个人助理、企业自动化和多Agent系统协作,大幅降低了AI应用开发门槛。

2026-01-29 10:07:42 505

原创 万字详解大模型应用发展:RAG、MCP、Agent的爆发之旅

万字详解大模型应用发展:RAG、MCP、Agent的爆发之旅

2026-01-28 10:12:38 640

原创 一篇文章讲透智能体(AI Agent),建议收藏!

在人工智能浪潮席卷全球的今天,**智能体(Agent)**已成为驱动技术变革与应用创新的核心概念之一。

2026-01-27 17:45:45 592

原创 【解决方案】工业级AI客服的进化:从传统RAG到Agentic RAG的实战指南

当你向客服求助“服务器报错怎么办”,却只得到一堆不相关文档链接时;当你描述“显示签收但没收到货”,客服却机械回复“订单已发货”时——那种 frustration(挫败感),正是传统 AI 客服系统失效的鲜活证明。

2026-01-27 12:04:48 573

原创 企业狂招AI人才!不懂大模型的程序员,转型突破点在哪里?

现在好多企业都开始招AI大模型方向的程序员了,不懂大模型,找工作都越来越难了。尤其现在公司裁员、降薪频频发生,大环境变化下,现在的技术人,都要求懂AI了。

2026-01-26 09:15:00 913

原创 【逆袭故事】双非硕士勇敢转型:放弃百度offer,投身大模型,成功入职鹅厂!

S同学是24年7月份从前司(某央企设计院)裸辞,同月报名赋范空间课程的风景园林专业的学员。这中间可以说是刷遍了大厂面试,最终也拿到了非常不错的结果!最后成功拿到360、格灵深瞳Ai产品经理、字节跳动国际化电商Ai智能客服产品经理、腾讯Ai agent产品经理的Offer,中间还拒绝了百度的算法岗Offer,最终选择了腾讯。

2026-01-26 09:15:00 500

原创 什么是上下文长度?为什么它如此重要?超长上下文将引爆哪些新应用?

大模型上下文长度从128K突破到百万tokens,是一次根本性的能力跃迁。通过高效注意力算法、分级存储管理、长上下文训练等技术,使AI从"短跑"对话者转变为"马拉松"式深度思考平台。它将在企业知识管理、代码工程、学术研究和个人数字生活等领域引发革命性应用,但也面临成本、评估、安全与隐私等挑战。未来,AI将更接近拥有持久记忆的智能体。

2026-01-26 09:00:00 1158

原创 MCP凉凉?Skills崛起?别傻了!这才是大模型Agent开发的核心真相!

AI圈最近有个有趣现象:Skills被热捧,MCP被各种唱衰。社交媒体上到处是"MCP协议要凉了"的声音,开发者纷纷转向Skills。Skills怎么来的,有什么用,怎么开发,文中把MCP与Skills的恩怨讲的明明白白。但开发者Philipp Schmid直接撰文开怼:你们搞错了重点。并给出了构建MCP Server的最佳实践。

2026-01-26 08:45:00 1149

原创 深入浅出:大模型三大支柱Workflow、RAG与Agent全解析!

文章解析了大模型三大支柱Workflow、RAG与Agent的关系与应用。Workflow解决任务执行流程,RAG增强模型知识获取,Agent提供自主规划能力。三者相互补充而非互斥,RAG系统常含Workflow,Agent则整合两者提升泛化能力。文章详细阐述各自技术特点、应用场景及优缺点,特别强调Agentic RAG在解决复杂查询时的优势,同时指出其工程复杂度和成本挑战。

2026-01-26 08:45:00 622

原创 SGLang华丽转身:RadixArk公司诞生,估值高达4亿美元!

SGLang开源AI加速工具转型为RadixArk公司,获4亿美元估值。该项目起源于伯克利实验室,前xAI工程师Ying Sheng任CEO。RadixArk提供SGLang推理引擎和Miles训练框架,目标是降低AI模型构建和运行成本10倍。类似项目vLLM也在商业化,推理基础设施成投资热点。核心工具保持开源,同时提供付费托管服务。

2026-01-25 09:00:00 1228

原创 清华大学震撼开源!GitHub新项目重新定义端侧Agent,大模型开发必学项目!

清华大学等机构联合开源的AgentCPM是一款仅4B参数却超越同尺寸SOTA、比肩30B级模型的端侧智能体。它专注于解决长周期复杂任务,支持超过100轮稳定交互,具备类人思考逻辑。项目开源了全套基础设施包括AgentDock、AgentRL和AgentToLeaP等工具,支持开发者复现和私有化部署,已登上HuggingFace热榜,是学习大模型智能体开发的优质资源。

2026-01-25 08:45:00 1275

原创 【2026年程序员新机遇】裁员潮下,真正稀缺、高薪、抗风险的岗位,只有一个——大模型应用开发工程师!

文章指出大模型应用开发工程师是2026年最稀缺、高薪、抗风险岗位。企业需要能将AI落地、解决业务难题的开发者,而非只会调API的普通程序员。掌握Fine-tuning微调、Agent智能体和RAG检索增强生成三大核心技术,可构建企业级AI产品,实现职业跨越。实战课程帮助开发者系统学习这些技术并提供就业支持,助力把握AI时代高薪机会。

2026-01-24 09:15:00 378

原创 【大模型人才热潮】月薪6万+,岗位激增10倍!小白入门指南:抓住大模型人才需求井喷机遇!

当下,AI(人工智能)领域的人才争夺已进入 “短兵相接” 的阶段。对于行业内的头部企业而言,这场人才较量早已超越普通的招聘竞争,成为决定未来市场地位、技术突破乃至生存发展的关键战略博弈。​

2026-01-24 09:15:00 1241

原创 【数字化转型新解】传统企业如何突破瓶颈?AI Agent揭秘“第三条路”策略!

本文详细阐述了传统企业如何利用AI Agent技术解决数字化转型瓶颈,介绍了其作为"数字员工"的核心价值、四大实施路径、技术架构设计、典型业务场景改造及持续优化方法。AI Agent能帮助企业从"系统驱动流程"回归到"业务驱动系统",提高效率,降低成本,文章强调应从小处着手,选择靠谱技术伙伴,把握AI Agent带来的窗口期。

2026-01-24 09:00:00 490

原创 AI Skills:大模型垂直落地的关键技术!

文章详细介绍了AI Skills的概念与进化历程,从早期聊天模型到具备环境感知和规划能力的智能体。Skills作为专家写给AI的"标准作业程序",包含元数据、操作手册和专用脚本三部分,其核心技术"渐进式披露"通过轻量挂载、按需加载和动态重置机制,有效解决大模型在垂直领域落地的准确性、安全性和成本效率问题,并通过金融合规研报案例展示了实际应用。

2026-01-24 08:45:00 1242

原创 【干货】STEM架构如何用“查表“解决MoE痛点,让大模型训练更稳定高效!

STEM是一种新型Transformer架构,通过将FFN中的矩阵乘法替换为静态查表操作,解决了MoE模型的路由复杂、训练不稳定等问题。STEM无需动态路由,减少了通信开销,提高了训练稳定性,同时增强了模型可解释性。实验表明,STEM在保持性能提升的同时降低了算力消耗,且在长文本处理和知识容量方面表现出色,为大规模Transformer模型提供了更高效的解决方案。

2026-01-24 08:45:00 660

原创 AI Agent裁员90%真相揭秘:程序员必读的企业级大模型应用指南(建议收藏)!

上周,我给一家企业实施AI Agent应用时,对方的项目总监悄悄问我:“K总,我听说这个Agent上线后,会裁掉90%的员工,是真的吗?”听到这一类问题,我一点也不惊讶,“AI焦虑”已经成为一种普遍社会现象。但要想全面深入地回答这个问题,就会涉及到Agent的发展阶段、核心组成、类型划分、以及当前面临的种种不足等等,不是一两句话就能说得清,下面通过这篇文章,好好剖析一下这个问题。

2026-01-23 09:15:00 1091

原创 北京35岁程序员亲述:如何用一年从Java转型AI,年薪突破50W(25K→50K)!

2025年底,北京一位35岁的传统Java开发工程师在被裁员后,通过4个月的系统学习成功转型AI大模型应用开发,拿到了年薪50万的offer,比他之前的薪资高出70%。而他的同事选择继续深耕传统开发,却仍在求职市场上挣扎。

2026-01-23 09:15:00 466

原创 大模型学习新突破:只需改动几个Token,教会新知识同时不忘旧知识!

文章介绍了一种名为Learning Anchors without Forgetting (LAwF)的大模型微调方法,通过只标注关键token作为"锚点",并结合参考模型保持原有知识分布,有效避免传统微调中的灾难性遗忘问题。该方法只需少量标注,成本低,且允许模型充分训练到收敛,特别适合仅需更新特定知识而不破坏原有能力的场景。相比传统SFT方法,LAwF在标注效率、遗忘风险和学习效果上均有显著优势。

2026-01-23 09:00:00 513

原创 Qwen3-VL多模态大模型深度解析:从架构设计到训练策略的完整指南!

Qwen3-VL采用三模块架构设计,通过DeepStack多层次视觉注入和Interleaved MRoPE等技术提升视觉理解能力。预训练采用四阶段渐进式策略,从视觉-语言对齐到超长上下文适配。后训练体系包含SFT、蒸馏和强化学习,使模型从"能用"进化到"好用",并引入视觉agent训练范式,让模型能像视觉智能体一样思考,实现多模态能力的全面突破。

2026-01-23 08:45:00 1229

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除