LCP:600 不含连续1的非负整数[leetcode-2]

给定一个正整数 n ,请你统计在 [0, n] 范围的非负整数中,有多少个整数的二进制表示中不存在 连续的 1

示例 1:

输入: n = 5
输出: 5
解释: 
下面列出范围在 [0, 5] 的非负整数与其对应的二进制表示:
0 : 0
1 : 1
2 : 10
3 : 11
4 : 100
5 : 101
其中,只有整数 3 违反规则(有两个连续的 1 ),其他 5 个满足规则。
非最优解(超时)

既然是判断二进制的连续1,那我移位就行了嘛

class Solution {
public:
    bool hasConsecutiveOnes(unsigned int n) {
    // 使用位运算检查连续的1
    return (n & (n >> 1)) != 0;
    }
    
    int findIntegers(int n) {
        int count=0;
        for(int i=0;i<=n;i++)
        {
            if(!hasConsecutiveOnes(i)) ++count;
        }
        return count;
    }
};
动态优化

从上面来看,问题有很大一部分是重叠的。比如我要判断0b10010 和0b100 这两个范围,明显来看,前一个问题包含后面一个问题了嘛。而且没来一个数字,我都要再算一遍,不是很麻烦吗。所以我们先解子问题

  • f(k) 表示长度为 k 的二进制数中不含连续 1 的数量。

  • 这样的二进制数可以有以下两种形式:

    • 0 结尾:此时前面可以是任意不含连续 1 的长度为 k-1 的数,所以此时的数量为 f(k-1)
    • 1 结尾:此时前面必须是 0,所以后面部分必须是长度为 k-2 的不含连续 1 的数,所以此时的数量为 f(k-2)
  • 由此我们得出递推公式:
    f ( k ) = f ( k − 1 ) + f ( k − 2 ) f(k)=f(k−1)+f(k−2) f(k)=f(k1)+f(k2)

  • 这个公式与斐波那契数列的定义完全一致(即 F(k) = F(k-1) + F(k-2)),因此可以将 f(k) 和斐波那契数列的某些项相等。

  • f(1)=2,f(2)=3 (并由此逆推出f(0)=1)

例子带来思路

比如下面我们要判断0b1'0010'0010这个数字范围内符合条件的数字,首先,这是一个9位数,使用我们上面的结论,先把问题优化一大截,从0b0~0b1111'1111中符合我们要求的数字的总数是f(8)这里我们已经优化了255次计算(如果数字更大,我们优化的次数会更多,成指数级上升)

下面的问题就变成:0b1’0000’0000到0b1’0010’0010这个区间内有多少数字符合要求。不难看出,问题其实已经转化为了求0~10’0010这个区间内的符合要求的数字个数(因为这个区间内总共这么多数字,而第一个1已经不连续了,所以必然有这样的结果)

对于这个从0开始的范围问题,我们很容易复用上面的过程。最后得到
f i n d I n t e g e r s ( 0 b 1 ′ 001 0 ′ 0010 ) = f ( 8 ) + f ( 5 ) + f ( 1 ) + 1 findIntegers(0b1'0010'0010)=f(8)+f(5)+f(1)+1 findIntegers(0b100100010)=f(8)+f(5)+f(1)+1
两个注意:

  • 注意f(k)是不包含右端点的,所以+1是自己是满足条件的数字
  • 注意,这里的例子中本身不包含连续的1,如果遇到0b100'1110呢?

0b100'1110的情况

  • 首先是0~100’0000-1的符合条件的数 f(6)
  • 然后是0~1000的符合条件的数f(3)
  • 然后是0100的符合条件的数f(2)[为什么和前面的1没关系?0b100‘10000b100’1011]两位数当然挨不到前一个1了。不过这样的话本身就不能算符合要求的了

f i n d I n t e g e r s ( 0 b 10 0 ′ 1110 ) = f ( 6 ) + f ( 3 ) + f ( 2 ) + 0 findIntegers(0b100'1110)=f(6)+f(3)+f(2)+0 findIntegers(0b1001110)=f(6)+f(3)+f(2)+0

代码

分析了这么多,代码当然水到渠成了

class Solution {
public:
	int findIntegers(int n) {
		if (n == 0) return 1;

		std::vector<int> fib(32, 0);

		fib[0] = 1;
		fib[1] = 2;
		for (int i = 2; i < 32; ++i) {
			fib[i] = fib[i - 1] + fib[i - 2];
		}

		int prevBit = 0;
		int result = 0;

		for (int i = 31; i >= 0; --i) {
			if (n & (1 << i)) {
				result += fib[i];
				if (prevBit) {
					return result;
				}
				prevBit = 1;
			}
			else {
				prevBit = 0;
			}
		}

		return result + 1;
	}
};

结果

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值