给定一个正整数 n
,请你统计在 [0, n]
范围的非负整数中,有多少个整数的二进制表示中不存在 连续的 1 。
示例 1:
输入: n = 5
输出: 5
解释:
下面列出范围在 [0, 5] 的非负整数与其对应的二进制表示:
0 : 0
1 : 1
2 : 10
3 : 11
4 : 100
5 : 101
其中,只有整数 3 违反规则(有两个连续的 1 ),其他 5 个满足规则。
非最优解(超时)
既然是判断二进制的连续1,那我移位就行了嘛
class Solution {
public:
bool hasConsecutiveOnes(unsigned int n) {
// 使用位运算检查连续的1
return (n & (n >> 1)) != 0;
}
int findIntegers(int n) {
int count=0;
for(int i=0;i<=n;i++)
{
if(!hasConsecutiveOnes(i)) ++count;
}
return count;
}
};
动态优化
从上面来看,问题有很大一部分是重叠的。比如我要判断0b10010 和0b100 这两个范围,明显来看,前一个问题包含后面一个问题了嘛。而且没来一个数字,我都要再算一遍,不是很麻烦吗。所以我们先解子问题
-
设
f(k)
表示长度为k
的二进制数中不含连续1
的数量。 -
这样的二进制数可以有以下两种形式:
- 以
0
结尾:此时前面可以是任意不含连续1
的长度为k-1
的数,所以此时的数量为f(k-1)
。 - 以
1
结尾:此时前面必须是0
,所以后面部分必须是长度为k-2
的不含连续1
的数,所以此时的数量为f(k-2)
。
- 以
-
由此我们得出递推公式:
f ( k ) = f ( k − 1 ) + f ( k − 2 ) f(k)=f(k−1)+f(k−2) f(k)=f(k−1)+f(k−2) -
这个公式与斐波那契数列的定义完全一致(即
F(k) = F(k-1) + F(k-2)
),因此可以将f(k)
和斐波那契数列的某些项相等。 -
f(1)=2,f(2)=3 (并由此逆推出f(0)=1)
例子带来思路
比如下面我们要判断0b1'0010'0010
这个数字范围内符合条件的数字,首先,这是一个9位数,使用我们上面的结论,先把问题优化一大截,从0b0~0b1111'1111
中符合我们要求的数字的总数是f(8)
这里我们已经优化了255次计算(如果数字更大,我们优化的次数会更多,成指数级上升)
下面的问题就变成:0b1’0000’0000到0b1’0010’0010这个区间内有多少数字符合要求。不难看出,问题其实已经转化为了求0~10’0010这个区间内的符合要求的数字个数(因为这个区间内总共这么多数字,而第一个1已经不连续了,所以必然有这样的结果)
对于这个从0开始的范围问题,我们很容易复用上面的过程。最后得到
f
i
n
d
I
n
t
e
g
e
r
s
(
0
b
1
′
001
0
′
0010
)
=
f
(
8
)
+
f
(
5
)
+
f
(
1
)
+
1
findIntegers(0b1'0010'0010)=f(8)+f(5)+f(1)+1
findIntegers(0b1′0010′0010)=f(8)+f(5)+f(1)+1
两个注意:
- 注意f(k)是不包含右端点的,所以+1是自己是满足条件的数字
- 注意,这里的例子中本身不包含连续的1,如果遇到
0b100'1110
呢?
0b100'1110
的情况
- 首先是0~100’0000-1的符合条件的数 f(6)
- 然后是0~1000的符合条件的数f(3)
- 然后是0100的符合条件的数f(2)[为什么和前面的1没关系?0b100‘10000b100’1011]两位数当然挨不到前一个1了。不过这样的话本身就不能算符合要求的了
f i n d I n t e g e r s ( 0 b 10 0 ′ 1110 ) = f ( 6 ) + f ( 3 ) + f ( 2 ) + 0 findIntegers(0b100'1110)=f(6)+f(3)+f(2)+0 findIntegers(0b100′1110)=f(6)+f(3)+f(2)+0
代码
分析了这么多,代码当然水到渠成了
class Solution {
public:
int findIntegers(int n) {
if (n == 0) return 1;
std::vector<int> fib(32, 0);
fib[0] = 1;
fib[1] = 2;
for (int i = 2; i < 32; ++i) {
fib[i] = fib[i - 1] + fib[i - 2];
}
int prevBit = 0;
int result = 0;
for (int i = 31; i >= 0; --i) {
if (n & (1 << i)) {
result += fib[i];
if (prevBit) {
return result;
}
prevBit = 1;
}
else {
prevBit = 0;
}
}
return result + 1;
}
};