自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(38)
  • 收藏
  • 关注

原创 【Python】利用pdf2image库 将PDF转成长图

利用pdf2image库 将pdf转成长图

2023-06-20 11:16:15 1317

原创 【docker】 ubuntu 搭建基于torch的docker开发环境

docker中自带python2.7 和python3.6,在这里我们将其升级为python3.6以上的版本,去。启动docker的脚本,ps:docker镜像为百度内镜像,torch版本较低,后续手动安装。b. 安装依赖,执行下列命令安装依赖过程中,如有提示,一律输入 y。下载对应的python版本,以python3.7为例。image_name 为创建的容器名称。d. 修改软连接(配置全局变量)以Ubuntu18.04为例。首先需要先关闭docker。e. 安装/升级pip。

2023-06-13 20:16:13 1684

原创 【阅读笔记】Diffusion模型系列文章

这种方法的一个优势是只需要训练一个通用的自编码模型,就可以用于不同的扩散模型的训练,在不同的任务上使用。在图到图生成任务下,扩散器采用图片的数据层和图片的上下文。这里的t做一个时间编码喂入网络中,因为在后向过程中,每一次迭代的网络都是相同的,即参数共享,那怎么让网络知道现在迭代到哪一步呢,那么我们就将t一同传进去参与训练,用t来告诉网络进行到第几次迭代了。在加噪声的过程中,扩散率逐渐增大,对应着在去噪声的过程中,扩散率逐渐减小,也就是说,去噪的过程是先把"明显"的噪声给去除,对应着较大的扩散率;

2023-04-13 19:54:27 1374

原创 【arxiv】data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language

核心思想是在使用标准Transformer体系结构的自蒸馏设置中,基于输入的屏蔽视图预测完整输入数据的潜在表示。data2vec不是预测特定于模式的目标,如单词、视觉标记或人类语音的局部单位,而是预测包含来自整个输入的信息的上下文化潜在表示。在语音识别、图像分类和自然语言理解的主要基准上的实验展示了一种新的艺术状态或主要方法的竞争性能。

2023-03-29 18:21:13 292

原创 【iclr2023】DESIGNING BERT FOR CONVOLUTIONAL NETWORKS: SPARSE AND HIERARCHICAL MASKED MODELING

我们发现并攻克了将BERT-style预训练或者图像mask建模应用到CNN中的两个关键障碍:1) CNN不能处理不规则的、随机的掩码输入图像;2)BERT预训练的单尺度性质与convnet的层次结构不一致对于第一点,我们将没有被mask掉的像素点视作为3d点云(点云是一种方便的3D表达方式)的稀疏体素;使用sparse CNN进行编码,这是sparse CNN首次引入2d-mask建模;对于第二点,我们开发了一个hierarchical decoder来连接不同尺度的编码特征重建图像。

2023-03-29 16:55:22 693

原创 【Leetcode】精选算法top200道(二)

leetcode(二)

2022-08-15 15:34:39 795

原创 【Leetcode】精选算法top200道(一)

leetcode(一)

2022-07-27 23:47:37 2111

原创 【cvpr2020】Referring Image Segmentation via Cross-Modal Progressive Comprehension

之前的方法缺乏利用语言中不同类型的信息词来准确对齐视觉和语言特征的能力。提出采用渐进式方法,分为两个阶段,第一步,模型根据实体词和属性词来感知表达式中描述的所有实体,第二步,模型进一步推理实体之间的关系,以突出所指对象并抑制其他不匹配的实体。(1)提出了一个跨模态渐进理解(CMPC)模块,首先感知表达式所有实体,然后利用输入表达式的关系词突出所指对象,抑制其他不相关的,为所指对象产生有区别的特征表示。(2)提出了一个文本引导特征交换(TGFE)模块,在语言特征的引导下进行多层次特征之间的自适应信息交流,

2022-06-22 15:26:12 1404

原创 【arxiv2022】LAVT: Language-Aware Vision Transformer for Referring Image Segmentation

在传统的范式中,Transformer在提高RIS方面的潜力还远远没有得到充分的探索。具体来说,跨模态交互只发生在特征编码之后。而跨模态解码器只负责对齐视觉和语言特征。以前的方法不能有效地利用编码器中的Transformer层来挖掘有用的多模态上下文。为了解决这些问题,提出利用视觉编码器网络在视觉编码期间联合嵌入语言和视觉特征。提出了一种语言感知视觉转换器(LAVT)网络,在该网络中,视觉特征与语言特征一起编码,能够“感知”每个空间位置的相关语言上下文。LAVT充分利用了vision Transform

2022-06-22 15:24:02 508

原创 【arxiv2022】MaIL: A Unified Mask-Image-Language Trimodal Network for Referring Image Segmentation

现有的方法,存在以下不足提出了一种用于图像、语言和掩码联合学习的统一三模态mask - image - language框架MaIL。

2022-06-22 15:16:54 403

原创 【cvpr2021】Locate then Segment: A Strong Pipeline for Referring Image Segmentation

以前的方法网络架构和实验实践越来越复杂,使得算法分析和比较变得越来越困难。此外,他们没有明确定位语言表达引导的参考对象,只利用耗时的后处理 DCRF 来生成最终的细化分割。提出一种新的方法,将RIS解耦为两个子序列任务:(a)引用对象位置预测,(b)对象分割掩码生成。模型首先融合视觉和语言特征以获得跨模态特征。对于(a),提出了一个定位模块来直接获得与表达对应的视觉内容。这样的对象先验将用作后续分割模块的视觉位置指导。对于 (b),将对象先验与跨模态特征连接起来,并利用轻量级 ConvNets 来获得最终的

2022-06-22 15:15:46 383 1

原创 【iccv2021】Vision-Language Transformer and Query Generation for Referring Segmentation

模型在不同层次上构建了语言和视觉特征之间的深度交互,极大地增强了多模态特征的融合和利用。此外,所提出的模块是轻量级的,其参数大小大致相当于七个卷积层。

2022-06-22 15:14:26 1138

原创 【cvpr2022】ReSTR: Convolution-free Referring Image Segmentation Using Transformers

1、以前的方法在处理每种模态中语义实体之间的长期交互方面存在困难。RIS需要捕捉这种交互,因为语言表达通常涉及到复杂的实体之间的关系,以精确地指出目标区域。在这方面,cnn和rnn由于其基本构建模块的局部性而受到限制。2、现有模型难以对两种模态之间复杂的相互作用进行建模。它们通过拼接-卷积运算聚合视觉和语言特征,它无法足够灵活有效地处理大量的各种RIS场景。1、ReSTR通过transformer提取视觉和语言特征。视觉编码器和语言编码器分别以一组不重叠的图像块和一组文字嵌入块作为输入,提取它们的特征,同

2022-06-22 15:11:11 709

原创 【cvpr2022】CRIS: CLIP-Driven Referring Image Segmentation

文章地址:CRISGithub:https://github.com/DerrickWang005/CRIS.pytorch1、现有的方法利用外部知识促进学习,主要采用单模态的预训练(如预训练的图像或文本编码器),缺乏多模态的对应信息。CLIP展示了从4亿对图像-文本对学习SOTA图像级视觉概念的能力,这有助于多模态任务。2、由于图像级预测与像素级预测的差异,直接使用CLIP对于像素级预测任务可能不是最优的。前者关注输入图像的全局信息,而后者需要学习每个空间激活的细粒度视觉表示。利用 CLIP 模型的强

2022-06-22 14:54:55 3257

原创 Visually-Rich Document understanding—— 阅读笔记

paperlist:1、2021《LayoutLM: Pre-training of Text and Layout for Document Image Understanding》微软2、2021《LayoutLMv2: Multi-modal Pre-training for Visually-rich Document Understanding》微软3、2021《ViBERTgrid: A Jointly Trained Multi-Modal 2D Document Representat

2021-11-12 11:09:14 2312

原创 事件共指消解系列文章——论文笔记

事件共指消解 KBP数据集19.09《基于多注意力机制的事件同指消解方法》任务描述:用于判断文档的多个事件实例是否指向同一个事件,并将相互同指的事件进行聚类,形成一个事件链。比如:S 1: A Cuban patrol boat with four heavily armed men landed on American shores.S2:These bozos let four armed Cubans land on our shores.触发词landed和land都指向同一个事件移动(

2021-06-28 16:57:02 2361

原创 知识图谱对齐——论文阅读笔记

《Cross-lingual Knowledge Graph Alignment via Graph Matching Neural Network》基于图匹配神经网络的跨语言知识图谱对齐摘要先前的跨语言的知识图谱对齐研究依赖于实体嵌入的思想,,其不能够在两个知识图谱上;此文介绍一种方法,表示其上下文信息的特征实体,主体实体图(局部实体子图),从这个角度来看,知识库的对齐工作可以看做图匹配问题,进一步提出注意力机制的解决方案。代码: https://github.com/syxu828/Crossl

2021-06-17 15:15:31 714

原创 从预训练语言模型中无监督构建知识图谱——阅读笔记

这篇论文有以下三点贡献:1、展示了如何从预训练语言模型中构建知识图谱。2、提出了一种无监督的两阶段方法:MAMA。3、构建了一类全新的知识图谱——开放知识图谱1. 背景介绍简单介绍一下知识图谱:现有大型知识图谱,诸如Wikidata、Yago、DBpedia,富含海量世界知识,并以结构化形式存储。如下图所示,每个节点代表现实世界中的某个实体,它们的连边上标记实体间的关系。这样,美国作家马克·吐温的相关知识就以结构化的形式记录下来。长期以来,知识图谱的构建通常基于手工标注,耗时耗力(例如Fre

2021-04-18 20:57:21 977

原创 实体对齐——阅读笔记

实体对齐实体对齐简介:不同的只是图谱对同一个实体的描述,会有差异。通过知识融合可以将不同知识图谱中的只是进行互补融合。实体对齐的目的:判断两个或者多个不同信息来源的实体是否为指向真实世界中同一个对象,将具有相同指称的命名实体聚集在一起。一、《A Survey on Entity Alignment of Knowledge Base》2016Abstract首先形式化定义了知识库实体对齐问题,然后对知识库的实体对齐工作进行总体概述,并从对齐算法、特征匹配技术和分区索引技术三个方面详细总结了各种可

2021-04-18 20:56:40 10959 1

原创 篇章级的事件抽取——阅读笔记

一、《DCFEE》《DCFEE: A Document-level Chinese Financial Event Extraction System based on Automatically Labeled Training Data》DCFEE:基于自动标注训练数据的文档级中文金融事件抽取系统Abstract针对事件抽取(Event Extraction)目前面临着训练数据缺乏和文档级别事件抽取两大问题,文章开创性的提出相应的解决方案。第一,训练数据缺乏。ACE 2005 中,各语言的文档数

2021-04-18 20:55:25 5120

原创 MAC下 在虚拟机上安装TensorFlow

一、搭建虚拟环境我的conda环境配置在~/.bash_profile文件中$ source ~/.bash_profile 在anaconda下创建虚拟环境,-n后面加环境名$ conda create -n ten python=3.5激活虚拟环境ten$ source activate ten进入虚拟环境安装路径$ cd /Users/daibeiya/anaconda3/envs/ten/bin二、安装tensorflow安装TensorFlow1.0版本,市面上都是Te

2020-08-17 10:39:24 731 1

原创 学习笔记——动态规划专题

动态规划的题目特点1、 计数型有多少种方式走到右下脚有多少种方法选出k个数的和是sum2、求最大值最小值型从左上角走到右下角路径的最大数字和最长上升子序列长度3、 求存在性型取石子游戏,先手是否必胜能不能选出k个数使得和为sum动态规划的总结1、确定状态研究最优策略的最后一步化为子问题2、转移方程根据子问题定义直接得到3、初始条件和边界条件细心、考虑周全4、计算顺序利用之前的计算结果例题解析及其代码例题一:求最大值最小值型题目:你有三种硬币,分别面值

2020-07-13 15:14:46 498

原创 数据结构之实验四:经典排序算法(直接插入、快排、选择)

一、实验目的:1.掌握重要的排序算法――直接插入排序和快速排序;2.掌握简单选择算法。3. 综合运用所学数据结构知识,提高解决实际问题的能力。二、实验内容:用键盘随机输入三组数据,依次利用三组算法实现三组数据的排序输出:1.直接插入排序;2.快速排序;3.简单选择排序;#include <iostream>using namespace std;#define MaxNum 20//直接插入排序算法int num1[MaxNum+1],num2[MaxNum+1],

2020-07-10 21:36:06 1321

原创 数据结构之实验三:图的遍历操作与拓扑排序算法

一、实验目的:1.掌握图的存储定义;2.掌握图的遍历操作;3.掌握图的拓扑排序算法。二、实验内容:1. 利用图的邻接矩阵,实现图的深度优先遍历搜索。图结构如下结果输出2. 采用邻接表作为有向图的存储结构,编写图的拓扑排序程序实现下图的拓扑排序输出;实验一:图的深度优先遍历操作定义邻接矩阵typedef struct{ int vex[MaxVertexNum]; int Edge[MaxVertexNum][MaxVertexNum]; int vexnum,

2020-07-10 14:46:43 1163

原创 数据结构实验二:哈夫曼编码算法的实现

一、实验目的:1.掌握二叉树的定义;2.掌握哈夫曼树和哈夫曼编码算法的实现。二、实验内容:实现一个哈夫曼编码系统,系统包括以下功能:(1)给定字符a,b,c,d,e,f的权重为6,2,7,10,3,12。(2) 建立哈夫曼树:根据统计结果建立哈夫曼树。(3) 建立哈夫曼码编码:利用得到的哈夫曼树,将各字符对应的编码输出屏幕。#include <iostream>using namespace std;typedef struct { int weight;

2020-07-06 21:56:53 3971 1

原创 数据结构之实验一:二叉树的基本操作

一、实验目的:1.掌握二叉树的定义;2.掌握二叉树的基本操作,如二叉树的建立、遍历、结点个数统计、树的深度计算等。二、实验内容:用递归的方法实现以下算法:1.以二叉链表表示二叉树,建立一棵二叉树;2.输出二叉树的中序遍历结果;3.统计二叉树的叶结点个数;#include <iostream>using namespace std;//二叉链表的定义typedef struct BiNode{ char data; struct BiNode *lchild,

2020-07-05 20:23:53 4555

原创 基于Python的数据预处理实战操作(缺失值的处理以及自定义函数)

首先读入titanic_train.csv文件,文件可以私信找我拿import numpy as npimport pandas as pdtitanic_survival = pd.read_csv("titanic_train.csv")titanic_survival.head()Out:PassengerId Survived Pclass Name Sex Age SibSp...

2020-05-07 11:17:47 1238

原创 Numpy的高级应用

一、ndarray对象的内部机理numpy的adarray可以将同质数据块解释为多维数组的方式,数据类型(dtype)决定了数据的解释方式ndarray是所有数组对象都是数据块的一个跨度视图ndarray的内容组成:一个指向数组(一个系统内存块)的指针数据类型dtype一个表示数组形状的元组np.ones((10,5)).shape一个跨度元组,其中的整数指的是为了前进到当...

2020-04-30 09:34:20 703

原创 基于Python的金融数据分析以及经济数据应用

几个基本概念:截面:表示某个时间点的数据面板:多个数据项在多个时间点的截面数据构成一个面板面板数据既可以被表示为层次化索引的DataFrame,也可以被表示为三维的Panel pandas对象import pandas as pdimport numpy as npfrom pandas import DataFrame,Seriesfrom datetime import date...

2020-04-25 16:53:30 5205

原创 MAC下 Anaconda的TypeError: resample() got an unexpected keyword argument 'how'解决方案

Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。其中函数resample的方法格式: DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start',kind=None...

2020-04-25 11:19:41 6502 1

原创 MAC下 Anaconda的ModuleNotFoundError: No module named 'pandas.io.data'解决方案

在学习python数据分析的时候遇到的问题import pandas.io.data as web---------------------------------------------------------------------------ModuleNotFoundError Traceback (most recent call las...

2020-04-25 11:13:37 1631

原创 基于Python的时间序列的数据处理

基本概念:时间戳,特定时期固定时期,如2020年2月或2020年全年时间间隔,由起始和结束时间戳表示,可以被看作是间隔的特例实验或过程时间,每个时间点都是相对于特定起始时间的一个度量from pandas import DataFrame,Seriesfrom datetime import datetimeimport numpy as npimport pandas as ...

2020-04-23 18:20:04 1250

原创 Mac下 Anaconda如何导入第三方库以及Python如何配置国内源

首先打开Anaconda,查看Anaconda的安装路径import syssys.pathOut:['', '/Users/daibeiya/anaconda3/lib/python36.zip', '/Users/daibeiya/anaconda3/lib/python3.6', '/Users/daibeiya/anaconda3/lib/python3.6/lib-dy...

2020-04-22 09:38:13 4847 2

原创 基于Python的数据聚合和分组运算

对数据集进行分组并对各组应用一个函数(聚合或者转换),这是数据分析工作的一个重要环节数据集准备好后,通常任务就是计算分组统计或生成透视表import pandas as pdfrom pandas import DataFrame,Seriesimport numpy as np1、根据一个或多个键拆分pandas对象pandas的groupby可以对数据集进行切片、切块、摘要等...

2020-04-22 09:27:06 423

原创 基于Python的绘图与可视化

简单介绍matplotlib是一个2D的绘图包,他还有很多插件工具集,用于3D图形的mplot3d以及用于地图和投影的basemapimport matplotlib.pyplot as pltfrom numpy.random import randnimport pandas as pdfrom pandas import DataFrame,Seriesimport numpy ...

2020-04-19 21:35:38 700

原创 基于Python的数据的规整化

1、合并数据集from pandas import DataFrame,Seriesimport pandas as pdimport numpy as npdf1 = DataFrame({'key':['b','b','a','c','a','a','b'], 'data1':range(7)})df2 = DataFrame({'key':['b',...

2020-04-18 11:37:28 269

原创 基于NumPy的数组和矢量计算

函数库的导入import numpy as npimport numpy.random as nprimport matplotlib.pyplot as plt1、创建ndarray一个列表的转换data = [6,7.5,8,0,1]arr = np.array(data)利用函数创建np.zeros(10)Out:array([ 0., 0., 0., ...

2020-04-12 15:28:40 257

原创 MAC下安装Eclipse搭建Python环境

一、Eclipse安装Eclipse官网https://www.eclipse.org/downloads/,选择需要的版本下载。我下载的版本是Eclipse IDE for C/C++ Developers,如图所示Eclipse需要JDK支持,如果Eclipse无法正常运行,请到Java官网下载JDK安装:http://www.oracle.com/technetwork/java/......

2020-01-21 20:51:42 1577

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除