Q: 已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n)。从 n 个整数中任选 k 个整数相加,可分别得到一系列的和。例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:3+7+12=22; 3+7+19=29; 7+12+19=38; 3+12+19=34。现在,要求你计算出和为素数共有多少种。例如上例,只有一种的和为素数:3+7+19=29。
#include<bits/stdc++.h>
using namespace std;
int x[22];
bool prime(int m) //判断是否是质数;
{
for(int i=2;i<=sqrt(m);i++)
{ if(m%i==0)
return false;}
return true;
}
int rule(int left,int sum,int a,int b) //left为剩余的k,sum为前面累加的和,a和b为选取范围;
{ 调用递归生成全组合,在过程中逐渐把K个数相加,当选取的数个数为0时,直接返回前面的累加和是否为质数即可 ; if(left==0)
return prime(sum); //返回和判断是否是素数; 递归算法
int t=0;
for(int j=a;j<=b;j++)
t+=rule(left-1,sum+x[j], j+1,b);
return t;
}
int main()
{
int n,k;
cin>>n>>k;
for(int i=0;i<n;i++)
cin>>x[i];
cout<<rule(k,0,0,n-1); //调用递归;
return 0; }