Leetcode 面试题13 - 机器人的运动轨迹
地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?
示例:输入:m = 2, n = 3, k = 1
输出:3
比较容易想到的方法是 广度优先遍历,但是仔细分析后可以发现,由于其初始坐标为左上角坐标,则 对任意一个可达坐标,若其上方或左侧坐标存在,则必有可达坐标。下图为k=10的例子,橙色部分为不可达节点,为三角形,可以证明上述观点。
根据上述特性,我们可以考虑使用 递推法 简化这个问题。使用 T ( m , n ) T(m,n) T(m,n) 标识坐标 ( m , n ) (m,n) (m,n) 是否可达, G ( m , n ) G(m,n) G(m,n) 表示当前坐标数字之和,则有递推公式:
T ( m , n ) = T ( m − 1 , n