Leetcode 面试题13 - 机器人的运动轨迹

这篇博客探讨了LeetCode面试题13,涉及机器人在m行n列的方格中移动的问题。机器人只能向上、下、左、右移动,且不能进入行坐标和列坐标的数位之和大于k的格子。文章指出,使用广度优先遍历并不适用,并提出利用递推法解决,通过递推公式T(m,n)=T(m−1,n) or T(m,n−1) and G(m,n)>k来判断坐标是否可达。博主提供了C++实现的AC代码,并用数组记录坐标可达性,数组和即为可达坐标总数。" 50281429,726562,Linux下循环fork子进程并同步结束,"['Linux', '系统编程']
摘要由CSDN通过智能技术生成

Leetcode 面试题13 - 机器人的运动轨迹

地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?

示例:输入:m = 2, n = 3, k = 1
   输出:3

比较容易想到的方法是 广度优先遍历,但是仔细分析后可以发现,由于其初始坐标为左上角坐标,则 对任意一个可达坐标,若其上方或左侧坐标存在,则必有可达坐标。下图为k=10的例子,橙色部分为不可达节点,为三角形,可以证明上述观点。
在这里插入图片描述
根据上述特性,我们可以考虑使用 递推法 简化这个问题。使用 T ( m , n ) T(m,n) T(m,n) 标识坐标 ( m , n ) (m,n) (m,n) 是否可达, G ( m , n ) G(m,n) G(m,n) 表示当前坐标数字之和,则有递推公式:

T ( m , n )    =    T ( m − 1 , n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值