剑指 Offer 13. 机器人的运动范围

地上有一个m行n列的方格,从坐标 [0,0] 到坐标 [m-1,n-1] 。一个机器人从坐标 [0, 0] 的格子开始移动,它每次可以向左、右、上、下移动一格(不能移动到方格外),也不能进入行坐标和列坐标的数位之和大于k的格子。例如,当k为18时,机器人能够进入方格 [35, 37] ,因为3+5+3+7=18。但它不能进入方格 [35, 38],因为3+5+3+8=19。请问该机器人能够到达多少个格子?

示例 1:

输入:m = 2, n = 3, k = 1
输出:3

示例 2:

输入:m = 3, n = 1, k = 0
输出:1

深度优先算法

class Solution:

       def movingCount(self, m: int, n: int, k: int) -> int:
           
            def dfs(cur_x, cur_y, board):

                sum_k = cur_x // 10 + cur_x % 10 + cur_y // 10 + cur_y % 10

                if not 0 <= cur_x < m or not 0 <= cur_y < n or sum_k > k or board[cur_x][cur_y] < 0:
                    return 0

                board[cur_x][cur_y] = -1

                result = 1 + dfs(cur_x + 1, cur_y, board) + dfs(cur_x - 1, cur_y, board) + \
                        dfs(cur_x, cur_y + 1, board) + dfs(cur_x, cur_y - 1, board)

                return result

            board = [[1 for j in range(n)] for i in range(m)]

            return dfs(0, 0, board)

下面附上大神的解法

数位之和计算:

设一数字 xx ,向下取整除法符号 ,求余符号 \odot⊙ ,则有:

  • x ⊙ 10 x \odot 10 x10 :得到 xx 的个位数字;
  • x / / 10 x // 10 x//10 : 令 xx 的十进制数向右移动一位,即删除个位数字。

因此,可通过循环求得数位和 s s s ,数位和计算的封装函数如下所示:

def sums(x):
    s = 0
    while x != 0:
        s += x % 10
        x = x // 10
    return s

由于机器人每次只能移动一格(即只能从 x x x 运动至 x ± 1 x \pm 1 x±1),因此每次只需计算 x x x x ± 1 x \pm 1 x±1 的数位和增量。本题说明 1 ≤ n , m ≤ 100 1 \leq n,m \leq 100 1n,m100 ,以下公式仅在此范围适用。

  • ( x + 1 ) ⊙ 10 = 0 (x + 1) \odot 10 = 0 (x+1)10=0 s x + 1 = s x − 8 s_{x+1} = s_x - 8 sx+1=sx8 例如 19 , 20 19, 20 19,20 的数位和分别为 19 , 20 19, 20 19,20
  • ( x + 1 ) ⊙ 10 ≠ 0 (x + 1) \odot 10 \neq 0 (x+1)10=0 时: s x + 1 = s x + 1 s_{x+1} = s_x + 1 sx+1=sx+1,例如 1 , 2 1, 2 1,2 的数位和分别为 1 , 2 1, 2 1,2

以下代码为增量公式的三元表达式写法,将整合入最终代码中。

s_x + 1 if (x + 1) % 10 else s_x - 8

可达解分析:
根据数位和增量公式得知,数位和每逢 进位 突变一次。根据此特点,矩阵中 满足数位和的解 构成的几何形状形如多个 等腰直角三角形 ,每个三角形的直角顶点位于 0 , 10 , 20 , . . . 0, 10, 20, ... 0,10,20,... 等数位和突变的矩阵索引处 。

三角形内的解虽然都满足数位和要求,但由于机器人每步只能走一个单元格,而三角形间不一定是连通的,因此机器人不一定能到达,称之为 不可达解 ;同理,可到达的解称为 可达解 (本题求此解) 。

图例展示了 n , m = 20 n,m = 20 n,m=20 k ∈ [ 6 , 9 ] k \in [6, 9] k[6,9] 的可达解、不可达解、非解,以及连通性的变化。

k = 6
在这里插入图片描述
k = 7
在这里插入图片描述
k = 8
在这里插入图片描述
k = 9
在这里插入图片描述
k = 10
在这里插入图片描述

根据可达解的结构和连通性,易推出机器人可 仅通过向右和向下移动,访问所有可达解 。

  • 三角形内部: 全部连通,易证;

  • 两三角形连通处: 若某三角形内的解为可达解,则必与其左边或上边的三角形连通(即相交),即机器人必可从左边或上边走进此三角形。
    在这里插入图片描述
    方法一:深度优先遍历 DFS

  • 深度优先搜索: 可以理解为暴力法模拟机器人在矩阵中的所有路径。DFS 通过递归,先朝一个方向搜到底,再回溯至上个节点,沿另一个方向搜索,以此类推。

  • 剪枝: 在搜索中,遇到数位和超出目标值、此元素已访问,则应立即返回,称之为 可行性剪枝

算法解析:

  • 递归参数: 当前元素在矩阵中的行列索引 ij ,两者的数位和 si, sj
  • 终止条件: 当 ① 行列索引越界 ② 数位和超出目标值 k ③ 当前元素已访问过 时,返回 0 0 0 ,代表不计入可达解。
  • 递推工作:
    1. 标记当前单元格 :将索引 (i, j) 存入 Set visited 中,代表此单元格已被访问过。
    2. 搜索下一单元格: 计算当前元素的 下、右 两个方向元素的数位和,并开启下层递归 。
  • 回溯返回值: 返回 1 + 右方搜索的可达解总数 + 下方搜索的可达解总数,代表从本单元格递归搜索的可达解总数。
class Solution:
    def movingCount(self, m: int, n: int, k: int) -> int:
        def dfs(i, j, si, sj):
            if i >= m or j >= n or k < si + sj or (i, j) in visited: return 0
            visited.add((i,j))
            return 1 + dfs(i + 1, j, si + 1 if (i + 1) % 10 else si - 8, sj) + dfs(i, j + 1, si, sj + 1 if (j + 1) % 10 else sj - 8)

        visited = set()
        return dfs(0, 0, 0, 0)

方法二:广度优先遍历 BFS

  • BFS/DFS : 两者目标都是遍历整个矩阵,不同点在于搜索顺序不同。DFS 是朝一个方向走到底,再回退,以此类推;BFS 则是按照“平推”的方式向前搜索。
  • BFS 实现: 通常利用队列实现广度优先遍历。

算法解析:

  • 初始化: 将机器人初始点 ( 0 , 0 ) (0, 0) (0,0) 加入队列 queue
  • 迭代终止条件: queue 为空。代表已遍历完所有可达解。
  • 迭代工作:
    1. 单元格出队: 将队首单元格的 索引、数位和 弹出,作为当前搜索单元格。
    2. 判断是否跳过: 若 ① 行列索引越界 ② 数位和超出目标值 k ③ 当前元素已访问过 ,执行 continue 。
    3. 标记当前单元格:将单元格索引 (i, j) 存入 Set visited 中,代表此单元格 已被访问过
    4. 单元格入队: 将当前元素的 下方、右方 单元格的 索引、数位和 加入 queue
  • 返回值: Set visited 的长度 len(visited) ,即可达解的数量
class Solution:
    def movingCount(self, m: int, n: int, k: int) -> int:
        queue, visited,  = [(0, 0, 0, 0)], set()
        while queue:
            i, j, si, sj = queue.pop(0)
            if i >= m or j >= n or k < si + sj or (i, j) in visited: continue
            visited.add((i,j))
            queue.append((i + 1, j, si + 1 if (i + 1) % 10 else si - 8, sj))
            queue.append((i, j + 1, si, sj + 1 if (j + 1) % 10 else sj - 8))
        return len(visited)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值