log函数,ceil,归纳法,换底公式

该博客主要探讨了一个关于砝码选择的问题,通过动态规划的方法来确定最少的砝码数量,以能够称出0到某个重量的所有整数重量。博主首先分析了问题的规律,然后给出了解决方案的数学推导,并用C++实现了一个计算所需最少砝码数的程序。程序中使用了向上取整函数ceil和对数运算,确保结果满足题目的要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题
题意:
在这里插入图片描述

假设n个砝码连续表示出0-k,选第n+1个砝码,重为2k+1,

k+1=2k+1-(k)
k+2=2k+1-(k-1)
2k+1=2k+1-(0)
2k+2=2k+1+1
3k+1=2k+1+(k)

ans[i+1] = 3*ans[i]+1
ans[i+1]+1/2=3(ans[i]+1/2)
ans[n]=3^(n-1)  *  (ans[1]+1/2)
(ans[1]+1/2)=3/2
所以  ans[n]=3^(n-1) * 3/2
ans[n]>=input
3^(n-1) * 3/2>=input
3^(n-1)>=input*2/3
n-1>=log3(input*2/3)
n>=log3(input*2/3)+1

在这里插入图片描述

log3m=log(m)/log(3)

log和log10函数

log以e为底,log10以10为底
#include <iostream>
#include <cmath>
using namespace std;
int main() {
    int k;
    cin >> k;
    //cout << ceil(log(2*k/3)/log(3))+1 << endl;
    if(k==1){  
    	cout<< 1; 
    	return 0;
    }
    cout << (ceil)(log(2*k/3)/log(3))+1 << endl; 
}

ceil向上取整,floor向下取整
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值