随机微分方程(1)——布朗运动(Brownian Motion)
抛硬币实验例子
投掷硬币实验,正面赢一块,反面输一块。 R i R_{i} Ri表示1或者-1的随机值。
当投掷i次时:
E [ R i ] = 0 E[R_{i} ]=0 E[Ri]=0 E [ R i 2 ] = 1 E[R_{i}^{2} ]=1 E[Ri2]=1 E [ R i R j ] = 0 E[R_{i}R_{j} ]=0 E[RiRj]=0其中, R i R_{i} Ri和 R j R_{j} Rj相互独立。
V a r = ∑ P i ∗ ( R i − R ˉ ) 2 = 0.5 ∗ 1 2 + 0.5 ∗ ( − 1 ) 2 = 1 Var=\sum P_{i}*(R_{i}-\bar{R})^{2}=0.5*1^{2}+0.5*(-1)^{2}=1 Var=∑Pi∗(Ri−Rˉ)2=0.5∗12+0.5∗(−1)2=1其中, R ˉ = E [ R i ] = 0 \bar{R}=E[R_{i} ]=0 Rˉ=E[Ri]=0
V a r = E ( R i 2 ) − E 2 ( R i ) Var=E(R_{i}^{2})-E^{2}(R_{i} ) Var=E(Ri2)−E2(Ri) ∵ E 2 ( R i ) = 0 \because E^{2}(R_{i} )=0 ∵E2(Ri)=0 ∴ E ( R i 2 ) = 1 \therefore E(R_{i}^{2})=1 ∴E(Ri2)=1令 S i S_{i} Si代表投硬币赢来的所有钱, R j R_{j} Rj为每次投硬币输或赢的钱: S i = ∑ j = 1 i R j S_{i}=\sum_{j=1}^{i}R_{j} Si=j=1∑iRj
条件期望:一个实数随机变量的相对于一个条件概率分布的期望值
e.g. 第6次投硬币的期望值取决于前5次的投掷 S 5 : S_{5}: S5: E [ S 6 ∣ R 1 . . . R 5 ] = S 5 E[S_{6}|R_{1}...R_{5}]=S_{5} E[S6∣R1...R5]=S5
S i S_{i} Si的统计性质
1、 E [ S i ] = 0 E[S_{i}]=0 E[Si]=0 E [ S i ] = E [ ∑ j = 1 i R j ] = ∑ j = 1 i E [ R j ] = i ∗ 0 = 0 E[S_{i}]=E[\sum_{j=1}^{i}R_{j}]=\sum_{j=1}^{i}E[R_{j}]=i*0=0 E[Si]=E[j=1∑iRj]=j=1∑iE[Rj]=i∗0=0
2、 E [ S i 2 ] = E [ R 1 2 + R 2 2 + . . . + 2 R 1 R 2 . . . ] = i E[S_{i}^{2} ]=E[R_{1}^{2}+R_{2}^{2}+...+2R_{1}R_{2}...]=i E[Si2]=E[R12+R22+...+2R1R2...]=i
首先要求得到方差i V a r [ S i ] = V a r [ ∑ R j ] = ∑ V a r [ R j ] = i Var[S_{i} ]=Var[\sum R_{j}]=\sum Var[R_{j}]=i Var[Si]=Var[∑Rj]=∑Var[Rj]=i
V a r [ R j ] Var[R_{j}] Var[Rj]每个方差都为1,所以i个1相乘就是i
再由方差的性质得到 V a r [ S i ] = E [ S i 2 ] − E 2 [ S i ] Var[S_{i}]=E[S_{i}^{2}]-E^{2}[S_{i}] Var[Si]=E[Si2]−E2[Si]
E 2 [ S i ] = 0 E^{2}[S_{i}]=0 E2[Si]=0
所以
E [ S i 2 ] = i E[S_{i}^{2}]=i E[Si2]=i
或者
E [ S i 2 ] = E [ ( ∑ j = 1 i R j ) 2 ] = E [ R 1 2 + R 2 2 + . . . + 2 R 1 R 2 . . . ] = i E[S_{i}^{2} ]=E[\left (\sum_{j=1}^{i}R_{j} \right ) ^{2}] =E[R_{1}^{2}+R_{2}^{2}+...+2R_{1}R_{2}...]=i E[Si2]=E[(j=1∑iRj)2]=E[R12+R22+...+2R1R2...]=i
因为 E [ R i 2 ] = 1 E[R_{i}^{2}]=1 E[Ri2]=1,所以 E [ R 1 2 + R 2 2 + . . . ] = 1 ∗ i E[R_{1}^{2}+R_{2}^{2}+...]=1*i E[R12+R22+...]=1∗i
所以 E [ S i 2 ] = i E[S_{i}^{2}]=i E[Si2]=i
马尔可夫性质(Markov Property)
以所有过去事件为条件的随机变量 S i S_{i} Si的值的分布仅取决于 S i − 1 S_{i-1} Si−1
注意: E [ S i ∣ S i − 1 ] ≠ S i E[S_{i}|S_{i-1}]\neq S_{i} E[Si∣Si−1]=Si马尔可夫性质中的期望值仅取决于 S i − 1 S_{i-1} Si−1
鞅性质(Martingale Property)
已知第5次抛硬币后赢了多少钱,第6次抛硬币的预期总收益就是在任何次数抛掷之后持有的金额。
E
[
S
i
∣
S
i
−
1
,
j
<
i
]
=
S
i
−
1
E[S_{i}|S_{i-1},j<i]=S_{i-1}
E[Si∣Si−1,j<i]=Si−1
二次变差(Quadratic Variation)
Q = V 2 = ∑ j = 1 i ( S j − S j − 1 ) 2 Q=V^{2}=\sum_{j=1}^{i}(S_{j}-S_{j-1})^{2} Q=V2=j=1∑i(Sj−Sj−1)2
由于: ∣ S j − S j − 1 ∣ = 1 |S_{j}-S_{j-1}|=1 ∣Sj−Sj−1∣=1
所以: ∑ j = 1 i ( S j − S j − 1 ) 2 = i \sum_{j=1}^{i}(S_{j}-S_{j-1})^{2}=i j=1∑i(Sj−Sj−1)2=i
让i趋近于无穷大,但是这种情况下,二次变差也趋近于无穷大,对于计算来说非常不方便。
如果将1元钱改为 t 6 \sqrt{\frac{t}{6} } 6t,新的硬币投掷实验仍然有马尔可夫性和鞅性质,而它得二次变差变为︰
∑ j = 1 6 ( S j − S j − 1 ) 2 = 6 ∗ ( t 6 ) 2 = t \sum_{j=1}^{6}(S_{j}-S_{j-1})^2=6*(\sqrt{\frac{t}{6} } )^2=t j=1∑6(Sj−Sj−1)2=6∗(6t)2=t
接下来加快游戏速度,将原本投掷6次改成投掷n次,则
∑ j = 1 n ( S j − S j − 1 ) 2 = n ∗ ( t n ) 2 = t \sum_{j=1}^{n}(S_{j}-S_{j-1})^2=n*(\sqrt{\frac{t}{n} } )^2=t j=1∑n(Sj−Sj−1)2=n∗(nt)2=t
当n趋近于无穷大,每次赌注(投一次得失的钱)趋近于无穷小时,离散过程变成了连续过程。
当 n = ∞ n=\infty n=∞时,得到的随机游走是有限的,有以下性质:
E [ S ( t ) ∣ S 0 ] = 0 E[S(t)|S_{0}]=0 E[S(t)∣S0]=0
方差: E [ S ( t ) 2 ] = t E[S(t)^2]=t E[S(t)2]=t
其中,S(t)代表已经赢的钱,或者t时间后随机数的值。
所以 Brownian Motion的性质:
E [ X t ] = 0 E[X_{t}]=0 E[Xt]=0
V a r ( X t ) = t Var(X_{t})=t Var(Xt)=t
小结
有限性(Finitness)
对赌注大小的缩放(必须使用 t 6 \sqrt{\frac{t}{6} } 6t作为赌注的size),或随时间步长的增量都会导致随机游走在有限时间内趋于无穷大,或者导致它完全没有运动。增量与时间步长的平方根需要成比例。
连续性(Continuity)
连续,但不能求导
马尔可夫性质(Markov Property)
在 τ < t \tau < t τ<t中,X(t)的值取值取决于X( τ \tau τ)
鞅性质(Martingale Property)
在 τ < t \tau < t τ<t中,X(t)的期望就是X( τ \tau τ)
二次变差(Quadratic Variation)
把
0
−
t
0-t
0−t的时间段分成
t
+
1
t+1
t+1个点
∑
j
=
1
n
(
X
t
j
−
X
t
j
−
1
)
2
⟶
t
\sum_{j=1}^{n}(X_{t_{j}}-X_{t_{j-1}}) ^2 \longrightarrow t
j=1∑n(Xtj−Xtj−1)2⟶t
正态分布(Normality)
在有限时间增量 t i − 1 t_{i-1} ti−1到 t i t_{i} ti上, X t i − X t i − 1 X_{t_{i}}-X_{t_{i-1}} Xti−Xti−1服从正态分布,均值为0,方差为 t i − t i − 1 t_{i}-t_{i-1} ti−ti−1。布朗运动的增量服从正态分布。
本文内容摘自B站视频量化金融理论【1】布朗运动 - 随机微积分和伊藤引理。