[剑指offer]连续子数组的最大和

本文探讨了一维模式识别中的经典问题:如何找到连续子向量的最大和。通过具体实例说明了算法原理,并提供了一种动态规划方法的实现方案。

题目

连续子数组的最大和

描述

HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)

思路

根据算法书上的算法实现。动态规划

package com.wy.offer;

/**
 * @date 2018/3/29 15:58
 */
//最大连续字段和
public class T30 {

    public static void main(String[] args) {
        int []arr = {6,-3,-2,7,-15,1,2,2};
        int []arr2 = {-2,-8,-1,-5,-9}; // -1 为负数的情况没有足够考虑啊
        System.out.println( T30.LSC(arr) );
    }
    //最大连续字段和
    public static int LSC(int []arr){
        int sum = arr[0],b = 0; //进行改进,解决出现都是负数的情况
        for(int i=0;i<arr.length;i++){
            if(b>0){
                b += arr[i];
            }else{
                b = arr[i];
            }
            if(b>sum){
                sum = b;
            }
        }
        return sum;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值