题目
连续子数组的最大和
描述
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。你会不会被他忽悠住?(子向量的长度至少是1)
思路
根据算法书上的算法实现。动态规划
package com.wy.offer;
/**
* @date 2018/3/29 15:58
*/
//最大连续字段和
public class T30 {
public static void main(String[] args) {
int []arr = {6,-3,-2,7,-15,1,2,2};
int []arr2 = {-2,-8,-1,-5,-9}; // -1 为负数的情况没有足够考虑啊
System.out.println( T30.LSC(arr) );
}
//最大连续字段和
public static int LSC(int []arr){
int sum = arr[0],b = 0; //进行改进,解决出现都是负数的情况
for(int i=0;i<arr.length;i++){
if(b>0){
b += arr[i];
}else{
b = arr[i];
}
if(b>sum){
sum = b;
}
}
return sum;
}
}

本文探讨了一维模式识别中的经典问题:如何找到连续子向量的最大和。通过具体实例说明了算法原理,并提供了一种动态规划方法的实现方案。
1728

被折叠的 条评论
为什么被折叠?



